TREATMENT EFFICIENCY EVALUATION OF THREE MACROPHYTES FOR DOMESTIC WASTEWATER USING PILOT CONSTRUCTED WETLAND SYSTEM

JUSTIN, DILLULLA LAZARUS

(19PCI02082)

OCTOBER, 2021

TREATMENT EFFICIENCY EVALUATION OF THREE MACROPHYTES FOR DOMESTIC WASTEWATER USING PILOT CONSTRUCTED WETLAND SYSTEM

BY

JUSTIN, DILLULLA LAZARUS

19PCI02082

B.Eng. Agric. & Biosystems Engineering, Landmark University, Omu-Aran

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M. ENG.) DEGREE IN CIVIL ENGINEERING IN THE DEPARTMENT OF CIVIL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY

OCTOBER, 2021

ACCEPTANCE

This is to attest that this dissertation was accepted in partial fulfilment of the requirement for the award of Master of Engineering (M. Eng.) degree in Civil Engineering, Department of Civil Engineering, College of Engineering, Covenant University, Ota.

Mr. John A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **JUSTIN**, **DILLULLA LAZARUS** (19PCI02082) declare that this research work was carried out by me under the supervision of Professor David O. Olukanni, of the Department of Civil Engineering, Covenant University. I also solemnly declare that to the best of my knowledge, no part of this report either wholly or partially has been submitted here in Covenant University or elsewhere in a previous application for the award of a degree. All sources of data and scholarly publications have been duly acknowledged.

JUSTIN, DILLULLA LAZARUS

Signature and Date

CERTIFICATION

We certify that this dissertation titled "TREATMENT EFFICIENCY EVALUATION OF THREE MACROPHYTES FOR DOMESTIC WASTEWATER USING PILOT CONSTRUCTED WETLAND SYSTEM" is an original research work carried out by JUSTIN, DILLULLA LAZARUS (19PCI02082) in the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Professor David O. Olukanni. We have examined and found this work acceptable as part of the requirements for the award of Master of Engineering in Civil Engineering.

Prof. David O. Olukanni (Supervisor) Signature and Date Prof. Anthony N. Ede (Head of Department) Signature and Date Prof. Ezechiel O. Longe (External Examiner) Signature and Date Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

DEDICATION

I dedicate this research work to God Almighty, for his wisdom and strength given to me to carry out this research. I also want to dedicate this research to my parent/guardians, for their love and support towards fulfilling my goals and ambitions.

ACKNOWLEDGEMENT

I want to appreciate God almighty for His protection, preservation, supplies and grace upon my life and family.

My sincere appreciation to the management of Covenant University, under the leadership of our Chancellor, Dr. David O. Oyedepo, and the Vice-Chancellor, Professor Abiodun H. Adebayo. Your leadership has set Covenant University on a pedestal where other institutions can only dream of getting to.

I want to also acknowledge the leadership of the Dean, School of Postgraduate Studies, Prof. Akan B. Williams.

My sincerest appreciation goes to my supervisor, Professor David O. Olukanni. He has been a pillar of support all through my stay at Covenant University. Your leadership and advice have placed me on the right track to attaining my academic and career goals. I will forever remain grateful, Sir.

Furthermore, I would like to appreciate the Dean of College of Engineering, Prof. David O. Omole and the Department of Civil Engineering under the leadership of Professor Anthony N. Ede, and also the past and present Postgraduate Coordinators, Dr. Isaac I. Akinwumi and Dr. Gideon O. Bamigboye for creating an enabling environment for practical and efficient studies within the department and even for their hands-on approach towards ensuring a successful completion of the degree program.

My parents/guardians; Bishop and pastor (Mrs) David Abioye, and the entire Abioye's family am deeply grateful for the agape love you showed and taught me. May the Lord God keep protecting, preserving and reward you abundantly.

To my mentors; Prof. David O. Olukanni and Dr. Emenike PraiseGod, for your guidance in the conceptualization and actualization of this research project, I deeply appreciate you. Also, Dr. Ofuyatan O. Dr. Solomon Oyebisi and Mr. Gift Olimaro for the unmerited all-round support and encouragement granted to me, I most-gratefully appreciate

My sincerest regards to my friends and colleagues: Engr. Kunle, Amos Saidu, Pst. Ibrahim Obadiah, Olufemi, Engr. John Olufemi, Joy Omoike, Grace Ishaku, Etim Mmemek-Abasi, Emmanuel Fagbenle, Academe Sunday, Oyindamola Araoye and David Enabulele, to name a few, for their ideas, support, and encouragement. Finally, I would love to appreciate my parents and lovely siblings for their support and guidance. I love you all.

TABLE OF CONTENTS

CON	ΓENTS	PAGE
COV	ER PAGE	i
ACC	EPTANCE	iii
DECI	LARATION	iv
CER	TIFICATION	v
DEDI	CATION	vi
ACKNOWLEDGEMENT		vii
LIST OF FIGURES		xi
LIST OF TABLES		xii
LIST OF ABBREVIATIONS		xiii
ABSTRACT		
CHAPTER ONE: INTRODUCTION		1
1.1	Background study	1
1.2	Problem Statement	4
1.3	Aim	5
1.4	Objectives	5
1.5	Justification for the study	5
1.6	Scope of Study	6
CHA	PTER TWO: LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Global Water quality and scarcity situations	8
2.3	Treated wastewater Reuse opportunities	9
2.4	Advantages of CWs over Conventional Wastewater Treatment Systems	9

2.5	Pur	ification Mechanism in Constructed Wetlands	11
	2.5.1	Types of constructed wetlands for wastewater treatment	12
	2.5.2	Macrophytes for Wastewater Treatment	16
	2.5.3	Pollutant removal capacity of the selected macrophytes	17
	2.5.4	Water hyacinth (Eichhornia crassipes)	18
	2.5.5	Water lettuce (Pistia stratiotes)	20
	2.5.6	Common Duckweed (Lemna minor)	22
2.6	Cor	nstructed wetland substrate	25
2.7	Cor	nstructed wetland microorganisms	26
2.8	Key	y constructed Wetland design and operation Parameters	26
	2.8.1	Environmental Protection Agency Effluent Discharge Standards	28
2.9	Gap	s in Knowledge	30
СН	CHAPTER THREE: MATERIALS AND METHOD 31		
3.1	Set-1	ip Location	31
3.2	Expe	erimental Design	31
3.3	Plan	t collection and cultures	33
	3.3.1	The Laboratory Test Parameter Includes	33
3.4	Exp	perimental procedure	33
3.5	Sar	npling, Tests and Analysis	34
	3.5.1	Sample collection and laboratory tests	34
	3.5.2	Materials and Equipment	34
	3.5.3	Sample Preservation	35
	3.5.4	Electrical Conductivity	35
	3.5.5	Total Suspended Solids (TSS)	37

	3.5.6	Turbidity	37
	3.5.7	Result analysis	37
СН	APTER	FOUR: RESULTS AND DISCUSSION	38
4.1	Re	sults of Initial wastewater Analysis	38
4.2	Tre	ated Effluent Quality of the three Macrophytes	39
	4.2.1	Total Suspended Solids Removal	42
	4.2.2	Total Phosphorus Removal	42
	4.2.3	Total Nitrogen Removal	44
	4.2.4	Biochemical Oxygen Demand Removal	44
	4.2.5	Chemical Oxygen Demand Removal	45
	4.2.5	E.coli Removal	46
4.3	Con	parison of average treatment performance of three macrophyes	47
4.4	Cor	relation of Treated Effluent values with EPA/NESREA standard	48
4.5	Obs	ervations	49
СН	APTER	FIVE: CONCLUSION AND RECOMMENDATION	50
5.1	Cor	nclusion	50
5.2	Rec	commendations	51
5.3	Cor	tributions to Knowledge	51
RE	FERENC	CES	53

LIST OF FIGURES

FIGURE	TITLE OF FIGURES	PAGE
Figure 2.1:	Classification of constructed Wetlands	13
Figure 2.2:	Hybrid constructed Wetland	15
Figure 2.3:	Free water surface flow constructed wetland	15
Figure 2.4:	Water Hyacinth Plant.	21
Figure 2.5:	Water Lettuce Plant	21
Figure 2.6:	Common Duckweed plant	21
Figure 3.1:	Constructed wetland Design Set-up	32
Figure 3.2:	Complete set-up of Constructed wetland with plants	33
Figure 3.5:	Water Sampling and Laboratory Test equipment	37
Figure 3.51	: Laboratory Test Process	37
Figure 4.1:	Raw wastewater concentration Vs EA/NESREA standard Limits	40
Figure 4.20	: TSS Removal Efficiency by the Three aquatic macrophytes	42
Figure 4.21	: Removal Efficiency of TP for the three aquatic macrophytes	42
Figure 4.22	: TN removal Efficiency for the Three aquatic macrophytes	44
Figure 4.23	: BOD ₅ removal Efficiency of the three aquatic macrophytes	44
Figure 4.24	: COD removal Efficiency of three aquatic macrophytes	47
Figure 4.25	: E.coli removal Efficiency of the three aquatic macrophytes	47
Figure 4.30	: Correlation of Treated Effluents with EPA/NESREA standard values	49

LIST OF TABLES

TABLE	TITLE OF TABLES	PAGE
Table 2.1:	Constructed Wetland Systems Vs Conventional Wastewater Treatment Systems	10
Table 2.2:	Summary of pollutant removal rate of water hyacinth	19
Table 2.3:	Summary of pollutant removal rate of water lettuce	22
Table 2.4:	Summary of pollutant removal rate of duckweed	23
Table 2.5:	Heavy metals removal Efficiency of Common aquatic macrophytes	23
Table 2.6:	Recommnended design and operational parameters for constructed wetlands	27
Table 2.7:	Summary of Constructed wetland type selection criteria for maximum efficiency	28
Table 2.8:	Major characteristics of typical domestic wastewater	29
Table 2.9:	EPA Effluent discharge standard values	30
Table 4.1:	Initial wastewater characteristics	39
Table 4.2a	: Treated Effluent values for the three aquatic macrophytes	41
Table 4.2b	: Removal Efficeiency of the three aquatic macrophytes	41
Table 4.3:	Average Removal Efficiency of the three aquatci macrophytes	49

LIST OF ABBREVIATIONS

BOD: Biochemical Oxygen Demand
COD: Chemical Oxygen Deman
CWs: Constructed Wetlands
CWWTS: Conventional Wastewater Treatment systems
EC: Electrical Conductivity
EPA: Environmental Protection Agency
FWSFCW: Free-Water Surface Flow Constructed Wetland
HLR: Hydraulic Loading Rate
HRT: Hydraulic Retention Time
NESREA: National Environmental Standards and Regulations Enforcement Agency
SSFCW: Sub-Surface Flow Constructed Wetland
TDS: Total Dissolved Solids
TN: Total Nitrogen
TP: Total Phosphorus
TSS: Total Suspended Solids
WHO: World Health Organization

ABSTRACT

The need to treat wastewater prior to disposal into the environment is of utmost importance. The use of constructed wetland systems (CWS) is becoming more popular due to their operational efficiency and cost-effective advantages over conventional treatment methods. However, the efficiency of CWS depends on the efficiency of their most vital component; aquatic macrophytes in reducing wastewater pollutants. Therefore, this study was aimed at investigating the treatment efficiency of water hyacinth (*Eichhornia crassipes*), water lettuce (*Pistia stratiotes*) and duckweed (Lemnar minor) using pilot CWS. It also examined the conformity of the treated effluents with National Environmental Standards and Regulations Enforcement Agency (NESREA) effluent discharge/reuse limits. All the 14 NESREA standard effluent discharge parameters were analysed. However, special attention was given to six (6) of the parameters; Total Suspended Solids (TSS), Total Phosphorus (TP), Total Nitrogen (TN), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and E.coli) which were above the standard discharge limits. Four pilot CWS were built using 150L tanks for the three plants and a control reactor. Local substrates; sand and gravel were used to optimize the pilot CW reactors. Effluents samples were collected every 7 days for 3 weeks, while maintaining 80% plant population. The result of pollutant removal efficiencies showed that water hyacinth and lettuce attained optimum results at 14 days hydraulic retention time (HRT) with 99.30% and 99.35% COD and TP removal, respectively. Water hyacinth was better at reducing BOD, COD, EC, TDS, DO and TC with efficiency of 97.31, 85.04, 90.35, 89.66, 95.95 and 65.99%, respectively. Howbeit, lettuce was more efficient in removing TSS, TP and E.coli at 96.24%, 97.55% and 94.43%, respectively. While duckweed reduced more of E.coli; 94.43% and TN; 90.83%. Generally, the overall results proved that water hyacinth was more efficient, but all the three macrophytes were efficient in domestic wastewater treatment. Also, the treated wastewater effluents passed NESREA limits, hence it is fit for discharge/or reuse purpose. This study is therefore a major contributor to SDG6 (clean water and sanitation).

Keywords: Domestic wastewater, wastewater treatment, constructed wetlands, macrophytes, water hyacinth, water lettuce, duckweed, sustainable technology.