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Frequent burning of three-phase induction motors windings has been reported.(e initial symptoms observed before the burning
of the windings were an increase in operating current and a temperature rise. (e induction motor protection and control system
was designed, developed, and constructed to reduce the problem of burnt winding by early detection and disconnection of supply
if the problem persists. It was found to be efficient, reliable, durable, and rugged.(e system is a boost to Nigerian industrialists as
it will reduce cases of burning of induction motors and the consequent downtime and cost. (e system is cheap and easy to repair
and maintain because the parts and components used in the design are available locally.

1. Introduction

Induction motors are highly reliable, rugged, and efficient
machines for several industrial applications [1–3]. However,
the motors are susceptible to three classes of faults: me-
chanical-, electrical-, and environmental-related faults. (e
electrical-related faults of induction motors result from
phase failure, unbalanced supply voltage or current, phase
sequence reversal, earthling fault, overloading, broken bars
and end ring, insulation failure, and short circuits [4]. Most
of these faults lead to the burning of the windings. Frequent
burning of windings of induction motors has to be a serious
threat to small and medium scale manufacturing industries
that use the motors as prime movers for manufacturing as
well as processing equipment [1]. A lot of useful time and
resources are lost in trying to rewind or replace burnt
motors. Rewound motors were reported to have reduced
output and low efficiency that could result in long term
energy and monitoring losses in [3]. Efficiency loss of be-
tween 0.5–0.7% was reported in [5]. Although the effect of
rewinding on motor efficiency seems to be negligible,

consideration downtime, expertise, and extra cost are in-
curred in the process.(erefore, there is a need to reduce the
cases of burnt windings to the barest minimum.

Two symptoms are evident before the induction motor’s
windings could get burnt, namely, an increase in operating
current and temperature [6]. Protection against the excessive
operating current can be achieved using overload relays.

Excessive temperature increases the rate of deterioration
of the insulation of the motor windings, degradation of lu-
bricant, and bearing failures [7]. Burning out of motor
windings results from insulation failure, and every 10% in-
crease in temperature reduces the insulation life by 50% [4].
In addition to the burning out of the windings, an increase in
temperature could result in increased power consumption
and decreased speed and efficiency. (ermal stress resulting
from excessive temperature greatly contributes to the re-
duction of the performance and lifetime of induction motors
[8]. (us, there is a need to protect the motor against ex-
cessive temperatures. As a result, this study designed and
implemented an electronic-based motor starter with the
capacity to protect the motor against extreme temperatures.

Hindawi
Journal of Engineering
Volume 2021, Article ID 3163046, 8 pages
https://doi.org/10.1155/2021/3163046

mailto:hope.orovwode@covenantuniversity.edu.ng
https://orcid.org/0000-0003-2817-7732
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3163046


2. Theoretical Model of the Effect of
Temperature on Motor Windings

(e protection of induction against thermal stress resulting
from excessive temperature is mandatory for continuous
and reliable operation. As a result, the National Electrical
Manufacturers Association established permissible operat-
ing temperature limits depending on classes (Y, A, E, B, F,
and H) of insulation of the stator winding [9]. Contem-
porary motors were reported to be produced in the F tol-
erance class in [10].

Class F motors are typically rated to operate with a
maximum coolant temperature of 40°C and a maximum
temperature rise of 100°C, resulting in a potential maximum
winding temperature of 140°C [11].

Operating a motor beyond its maximum will not cause
an immediate failure, rather a decrease in the life expectancy
of that motor [12]. A common rule of thumb applied to
insulation degradation is that, for every 10°C rise in tem-
perature, the expected life span is halved since the winding
resistance (RT) increases with temperature [9]:

RT � R0(1 + αt), (1)

where Ro � resistance of material at room temperature,
α� coefficient of linear expansion, and t� temperature.

Also, the power dissipated in the windings is the copper
loss which is proportional to the square of the current and
the winding resistance RT given by [13]

PT � I
2
RT. (2)

An increase of 10% in the current drawn will give an
increase of 21% in the copper loss, and therefore, an increase
of 21% in the temperature rise, which is 21°C for a Class F
motor. (is approximates to the life being reduced to a
quarter of that expected. (is shows that excessive tem-
perature affects the motor’s lifetime.

Furthermore, the efficiency (η) of themotor is not spared
as

η �
P1

P2
, (3)

where P1� power output and P2 � power output (P1) + power
loss (PL).

(e combined control and protective system were de-
veloped to protect the induction motor against these
problems so that its lifespan can be fully guaranteed.

3. The System Design

(e system design has the following subdivisions:

(i) (e starter
(ii) Dc power supply unit for the control circuitry
(iii) Temperature sensing and conditioning
(iv) Overcurrent sensing and conditioning
(v) (e forced cooling fan control unit
(vi) Delay, shut down, and indicator units

3.1. ,e Starter. (ere are various methods of induction
motor starting. (ese range from direct on-line, resistance,
primary reactance, autotransformer, slip ring motors
starting, star-delta, and so on. For this model, a 1.5 KW
induction motor was used. Since the rating is smaller than
3.75 KW [14], a direct on-line starting method was adopted.

Power is supplied to the induction motor via the closure
of the main contactor’s contacts, as shown in Figure 1. (e
closure of the contacts is done by energizing the coil of the
contactor coil (applying full 220V AC across the coil).

To effectively control the motor, considering Figure 1 is
introduced, the control line diagram of Figure 2 was used.

For the coil to be energized, a complete circuit has to be
formed by pushing the normally open start button and
connecting the normally closed stop button and the nor-
mally closed automatic stop relay contacts. On releasing the
start button, the circuit is sustained by the hold-on contact of
the main contractor.

(is can, however, be demagnetized by pushing the stop
button to break the circuit or opening the auto-stop relay
contact. (is will also open the hold-on contact.

3.2.,eDC Power Supply Unit. (e power unit consists of a
step-down transformer, silicon rectifiers, electrolytic ca-
pacitance filter, three-terminal integrated circuit regulators,
and a power-on indicator. Components were selected such
that the output voltage gives a+ 12V, 0V, and −12V. (e
circuit diagram of the power supply is as shown in Figure 3.

3.3. ,e Temperature Sensing and Conditioning Unit. (e
temperature transducer used was a negative temperature
coefficient (NTC) thermistor, whose resistive property de-
creases with an increase in temperature. A temperature-
resistance relationship for 0–250°C was obtained for the
thermistor to be used. (e reason for this is that it helps to
give an idea of a fixed resistor (R) to be connected in series
with it to form a voltage divided network, as shown in
Figure 4. (e voltage (Va) at the point of connection,
according to equation (4), varies in response to temperature
change:

Va �
RT VCC

RT + R
, (4)

where RT is the thermistor’s resistance.
To further condition the signal (Va), an instrument

amplifier was used where the voltage (Va) was fed to one
input and a reference voltage (Vb) set by a variable resistor
applied to the other input.

(e instrument amplifier is a differential amplifier and
has an output voltage which is the difference betweenVa and
the reference multiplied by the gain given by

g � 1 +
2
m

, (5)

where “m” is the gain control resistor [9].
(e circuit diagram of the temperature sensing and

conditioning is as shown in Figure 4.
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3.4. Overcurrent Sensing and Conditioning Unit. Small
current transformers were connected on the cable carrying
current to the motor (one per phase). (e current trans-
former is necessary because the current flowing into the load
is too high to be used directly with the control unit. So, the
current transformer is serving a dual purpose of stepping
down the current as well as isolation.

(e output of the current transformer is proportional to
the current flowing into the load (induction motor) and
connected to a variable resistor used as attenuators through
rectifier diodes. (e signal is a pulsating DC voltage whose
amplitude is proportional to the current drawn by the load.

(e peak attenuated values of the pulsating dc voltage is
compared with a preset reference voltage set byVR4,VR5, and
VR6 using operational amplifiers IC7a, IC7b, and IC7c as
comparators.

(e output of the operational amplifiers was connected
using diodes to form an OR gate arrangement. (e circuit
configuration is as shown in Figure 5.

3.5. Forced Cooling FanControl Unit. (e forced cooling fan
unit was used to control the speed of the fan, which is a small
AC motor in proportion to the temperature of the induction
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Figure 1: Direct on-line starter diagram for a three-phase induction motor.
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Figure 2: Line diagram of the induction control unit.
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Figure 3: (e circuit diagram of the power supply.
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motor. (e fan was powered via a Triac (BT136). (e gate of
the Triac was triggered through (IC2) a Diac-LED opto-
coupler (MOC3010) [10]. (e light-emitting diode section
was powered by a voltage controlled oscillator (VCO)
configured using the monolithic 555-timer integrated circuit
connected in the astable mode (free-running oscillator) with
frequency (f ) given in [15] as

f �
1.44

R11 + R22
􏼢 􏼣C5. (6)

(e control voltage terminal of the 555-timer was fed
with the variable voltage from the instrument amplifier.
(us, when the temperature of the motor starts rising, the
speed of the forced cooling fan gets higher. Figure 6 shows
the circuit diagram of this unit.

3.6. ,e Delay, Indicator, and Auto Shutdown Units. (e
output of the temperature sensing unit is connected to a
comparator configured using IC1d. (e output voltage is
compared with a reference voltage set by VR3. If the tem-
perature of the motor goes beyond the set value, the output
of the comparator goes high.

(e outputs of both sensing units were connected to the
delay network formed byR18 andC6 through diodesD13 andD15.

(e delay circuit is necessary to cater for the starting
period when the high starting current flows.

(e voltage across the delay capacitor (C6) is again
compared with a fixed reference voltage set by VR7

We use the comparator configured from IC7d whose
output goes high when the capacitor voltage exceeds the
reference voltage.

(e auto shutdown mechanism is a normally closed
contact of a relay that opens when a fault condition is detected.

Either of the two fault conditions (overcurrent or over-
temperature) can trigger it.(erefore, for the operator to know
what led to the tripping, a bistable multivibrator was incor-
porated and configured using a 555-timer integrated circuit.

(e triggering of the multivibrator is conditioned by
both the output of the fault detector and the delay output.
(e gate used was the 2-input NAND Schmitt trigger (4093).

(e outputs of the bistable multivibrators are “OR-ed”
using diodesD17 andD18 to bias the transistor (Q1) to switch
the relay to open the normally closed contact to shutdown
the motor automatically. (e circuit diagram of this section
is as shown in Figure 7, while Figure 8 shows the complete
circuit diagram of the system.

(e arrangement of the control unit, the forced cooling
fan, and the induction motor protected is shown in Figure 9.

4. Fabrication and Testing

As seen from the circuit diagram, simple and relatively
available electronic discrete and integrated circuit compo-
nents that are obtainable in average electronics shops were
used in addition to other local materials. (e low-cost
electronic discrete and integrated circuit components used
in implementing the system include diodes, operational
amplifiers, 555-timer, capacitors, transistors, resistors,
current transformers, thermistor, and others already re-
ferred to in Section 3. (e system was assembled and tested,
as shown in Figures 10 and 11, respectively.

To validate the functionality of the system, the motor
used for testing was loaded in three stages. In the first stage, it
was loaded at 50% of the full load and run for six hours in
case of which neither the fan nor the overload trip
responded. In the second stage, the motor was 100% loaded
in case of which the external cooling fan came on after thirty-
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Figure 4: (e circuit diagram of the temperature sensing and conditioning.
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eight minutes when the temperature became 920°C and
remained on for two hours without overload trip operating.
Lastly, the motor was loaded above full load capacity in case
of which the overload tripped in forty-three seconds. (e
results show that the system can adequately protect in-
duction motors against overcurrent and excessive temper-
ature. (e external forced cooling fan helped in keeping the
motor’s temperature below normal operating temperatures,

thus preventing the insulation breakdown of the copper
conductors used for the windings.

4.1. Cost Implication. (e prototype used for the 1.5 KW
three-phase induction motor costs N6, 780 : 00, as of June
2020 which is quite affordable by small and medium scale
industrialists and business operators.
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5. Conclusion

(e induction motor protection and control system was
designed, developed, and constructed. It was found to be
efficient, reliable, durable, and rugged. (e system is a boost
to Nigerian industrialists as it will reduce cases of burning of
induction motors and the consequent downtime and cost.
(e system is cheap and easy to repair and maintain because
spare parts and components are available locally.
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