PERFORMANCE AND IMPACT OF POLYMER NANOCOMPOSITES ON ENHANCED OIL RECOVERY

SOWUNMI, AKINLEYE OLAMILEKAN

(05CF02623)

AUGUST, 2021

PERFORMANCE AND IMPACT OF POLYMER NANOCOMPOSITES ON ENHANCED OIL RECOVERY

BY

SOWUNMI, AKINLEYE OLAMILEKAN (05CF02623)

B.Eng (Hons) Chemical Engineering, Covenant University, Ota;

M.Sc Chemical Engineering, Masdar Institute of Science and Technology (Now Khalifa

University of Science and Technology), Abu Dhabi, UAE

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN THE DEPARTMENT OF CHEMICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA.

AUGUST, 2021

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Chemical Engineering in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

.....

DECLARATION

I, **SOWUNMI, AKINLEYE OLAMILEKAN** (**05CF02623**) declare that this research was carried out by me under the supervision of Prof. Vincent E. Efeovbokhan of the Department of Chemical Engineering and Prof. Oyinkepreye D. Orodu of the Department of Petroleum Engineering, College of Engineering, Covenant University, Ota. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

SOWUNMI, AKINLEYE OLAMILEKAN

Signature and Date

CERTIFICATION

We certify that this thesis titled "**Performance and Impact of Polymer Nanocomposites on Enhanced Oil Recovery**" is an original research work carried out by **SOWUNMI**, **AKINLEYE OLAMILEKAN (05CF02623)** in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Vincent E. Efeovbokhan and Prof. Oyinkepreye D. Orodu. We have examined and found the work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Chemical Engineering.

Prof. Vincent E. Efeovbokhan Supervisor	Signature and Date
Prof. Oyinkepreye D. Orodu Co-Supervisor	Signature and Date
Prof. Vincent E. Efeovbokhan HOD, Chemical Engineering	Signature and Date
Prof. Sunday S. Ikiensikimama External Examiner	Signature and Date
Prof. Akan B. Williams Dean, School of Postgraduate Studies	Signature and Date

DEDICATION

To God Almighty who makes all things beautiful in his time, who crowns effort with success and gives strength in our time of weakness. I am thankful to God for giving me the fortitude to go through the rigor of actualizing this thesis.

This thesis is dedicated to my parents: Mr. and Mrs. Sowunmi for their prayers and support, and for giving me the best education that they can afford, which has helped me thus far. May God continually bless them and grant them long life and good health to enjoy the fruit of their labour.

ACKNOWLEDGEMENTS

I give thanks to God Almighty who gives strength and grace through every kind of challenge. My gratitude to the Chancellor of Covenant University, Dr. David O. Oyedepo, who established the platform on which the research was conducted. I am thankful to the Vice Chancellor, Prof. Abiodun H. Adebayo; the Registrar, Dr. Oluwasegun P. Omidiora; the Dean of the School of Post-Graduate Studies (SPS), Prof. Akan B. Williams; the Sub-Dean SPS, Dr. Emmanuel O. Amoo; and the Dean of the College of Engineering, Prof. David O. Omole.

In going through the different stages of this work, there were inputs from different people and I would like to acknowledge their contribution to the completion of this degree. I am grateful to my supervisors: Prof. Vincent E. Efeovbokhan and Prof. Oyinkepreye D. Orodu, who were kind to me and assisted me in every way possible during this research work. I want to thank them for their patience and the constant guidance towards the completion of the work.

I am thankful to the faculty and staff members of the Chemical and Petroleum Engineering Departments at Covenant University; their insights and ideas made the work robust. Hence I say thank you to Prof. James Omoleye, Dr. Augustine Ayeni, Dr. Oluranti Agboola, Dr. Ayodeji Ayoola, Dr. Sanmi Olabode, Mr. Tomiwa Oguntade, Mr. Temiloluwa Ojo, Dr. Francis Elehinafe, Dr. Angela Mamudu, Mrs. Damilola Abraham, Dr. Emmanuel Okoro, Mr. Oluwatosin Adegbite, Mr. Babalola Oni and Mrs. Bosede Adeniji. I also say a big thank you to Mr. Olakunle Daramola and Mr. Felix Iyala for their assistance in the laboratory.

I am thankful to Samuel Sofela at New York University, Abu Dhabi and Adetunji Alabi at Khalifa University of Science and Technology, Abu Dhabi for connection to some of the equipment I used.

Lastly, I want to express my deepest gratitude to my parents, Mr. and Mrs. Sowunmi who have supported me financially and emotionally throughout the entire thesis work. I would also like to acknowledge the support of my siblings and other family members who encouraged me to keep pushing until the thesis was done.

May God bless you all.

TABLE OF CONTENTS

CON	TENT	Page
COVER PAGE		i
TITL	JE PAGE	ii
ACC	EPTANCE	iii
DEC	LARATION	iv
CER'	TIFICATION	V
DED	ICATION	vi
ACK	NOWLEDGEMENTS	vii
TAB	LE OF CONTENTS	viii
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF PLATES	XV
LIST	OF ABBREVIATIONS	xvi
ABS	ГКАСТ	xix
1	CHAPTER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	4
1.3	Aim and Objectives of the Study	5
1.4	Justification of the Study	6
1.5	Scope of the Study	7
2	CHAPTER TWO: LITERATURE REVIEW	8
2.1	An Overview of Oil Recovery and Crude Oil Hydrocarbon	8
2.1.1	Oil Recovery	8
2.1.2	Crude Oil Classification and Characterization	10
2.2	Overview of Primary Oil Recovery Process	14
2.2.1	Gas Cap Drive	14
2.2.2	Rock and Liquid Expansion	15
2.2.3	Water Drive Mechanism	16
2.2.4	Depletion Drive Mechanism	16
2.2.5	Gas-Drainage-Drive Mechanism	17
2.2.6	Combination Drive Mechanism	17
2.3	Overview of Secondary Oil Recovery Process	18
2.4	Overview of Enhanced Oil Recovery Processes	19

2.5	Chemical Enhanced Oil Recovery Processes	23
2.5.1	Polymer Flooding Process	24
2.5.2	Surfactant Flooding Process	30
2.5.3	Chemical Combination Processes	31
2.6	Overview of Polymer Characterisation	34
2.6.1	Molecular Weight	34
2.6.2	Thermal Stability	35
2.6.3	Mechanical Properties	36
2.6.4	Rheological Measurement	36
2.7	Miscible Enhanced Oil Recovery Processes	42
2.8	Thermal Enhanced Oil Recovery Processes	44
2.9	Classifications and Applications of Nanoparticles in Enhanced Oil Recovery	47
2.9.1	Metal Oxides Nanoparticles	49
2.9.2	Magnetic Nanoparticles	54
2.9.3	Organic Nanoparticles	55
2.9.4	Inorganic Nanoparticles	57
2.9.5	Non-silica Nanoparticles	63
2.10	Characterization of Nanoparticles	66
2.10.1	Particle Size	66
2.10.2	Surface Charge	68
2.10.3	Surface Hydrophobicity	69
2.11	Overview of Nanoparticle Preparation	69
2.12	Health Risks of Nanoparticles	70
2.13	Wettability	70
2.14	Hydrocarbon Reserves and EOR Research in Nigeria	71
3 (CHAPTER THREE: MATERIALS AND METHODS	81
3.1	Materials	81
3.2	Equipment	83
3.3	Methods	83
3.3.1	Brine Preparation	83
3.3.2	Crude Oil Characterization	83
3.3.3	Preparation of Polymer Fluids	84
3.3.4	Polymer Nanocomposite	84
3.3.5	Core Plug Preparation	84
3.3.6	Porosity Determination of Core Plugs	85

3.3.7	Absolute Permeability and Hydraulic Flow Unit of the Core Plugs	86
3.3.8	Viscosity Measurement	86
3.3.9	Core Flooding	88
3.3.10	FTIR Analysis	90
3.3.11	TGA Analysis	90
3.4	Experimental Support Using Reservoir Simulation	90
3.4.1	SEM Analysis	91
3.4.2	Grid Section	91
3.4.3	Pressure-Volume-Temperature Properties	91
3.4.4	Solution Properties	92
3.4.5	Initialization	92
4	CHAPTER FOUR: RESULTS	93
4.1	Results of Viscosity of the Polymers	93
4.1.1	Effect of Weight Percentage on the Viscosity of Polymers	93
4.1.2	Effect of Temperature on the Viscosity of Polymers	94
4.1.3	Effect of Brine on the Viscosity of Polymers	96
4.1.4	Effect of Shear Rate on the Viscosity of Polymers	96
4.2	Viscosity Results for Nanocomposites	98
4.3	Core Flooding Results	101
4.3.1	Core Flooding Results for Xanthan Gum and its Nanocomposites	101
4.3.2	Core Flooding Results for Guar Gum and its Nanocomposite	107
4.3.3	Core Flooding Results for Gum Arabic and its Nanocomposite	113
4.4	Hydraulic Flow Unit of Core plugs	119
4.5	TGA Result for Polymers	120
4.6	FTIR Result for Polymers	120
4.7	SEM Result	122
4.7.1	SEM Micrograph of Nanoparticles	122
4.7.2	SEM Images of Core Plugs	124
4.8	Reservoir Simulation of Polymer Flooding	127
5	CHAPTER FIVE: DISCUSSION	132
5.1	Viscosity Profile for Polymers Fluids	132
5.1.1	Weight Percentage Effect on Viscosity of Polymers	132
5.1.2	Effect of Temperature on the Viscosity of Polymers	134
5.1.3	Brine Composition Effect on the Viscosity of Polymers	136
5.1.4	Shear Rate Effect on the Viscosity of Polymers	137

5.1.5	Nanoparticle Effect on the Viscosity of Polymers	139
5.2	5.2 Core Flooding Results	
5.2.1	Xanthan Gum Polymer and its Nanocomposite	142
5.2.2	Guar Gum Polymer and its Nanocomposite	144
5.2.3	Gum Arabic Polymer and its Nanocomposite	146
5.3	TGA Analysis for Polymers	148
5.4	Analysis of Infrared Spectral Analyses	149
5.4.1	FTIR Analysis of Xanthan Gum	149
5.4.2	FTIR Analysis of Guar Gum	150
5.4.3	FTIR Analysis of Gum Arabic	150
5.5	Analysis of SEM Results	151
5.6	Experimental Validation Using Reservoir Simulation	153
6	CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS	155
6.1	Summary	155
6.2	Conclusion	156
6.3	Contributions to Knowledge	157
6.4	Limitations of the Study	158
6.5	Recommendations for Further Studies	159
REFE	CRENCES	161
APPENDIX A		186
APPENDIX B		189
APPENDIX C		207
APPENDIX D		210

LIST OF TABLES

Table	Title of Table	Page
2.1	Standard methods for measuring crude oil properties	12
2.2	Terms for interpretation of $\boldsymbol{\sigma}$ - $\boldsymbol{\epsilon}$ diagrams	37
2.3	Basic rheological models for ideal situations	39
2.4	Summary of fluid flow behaviours	40
2.5	Corresponding shear for RPM values of the OFITE 800 Viscometer	41
2.6	Crude oil recovery mechanisms for nanoparticles and nanocomposites	67
2.7	Nigerian oil and gas sector statistics	72
3.1	Dimensions of core plugs	81
3.2	Weight percentages and corresponding quantities	84
3.3	Nanocomposite combinations used for viscosity measurements	87
3.4	Nanocomposite combinations used for core flooding	89
3.5	PVT properties of water and dead oil	92
3.6	Solution and rock properties	92
4.1	Percentage increase in polymer viscosity from nanoparticle loading	101
4.2	Properties of core plugs used for sequential xanthan gum flooding	101
4.3	Simultaneous flooding of water and xanthan gum polymer	102
4.4	Properties of core plugs used for xanthan gum – silica flooding	103
4.5	Properties of core plugs used for xanthan gum – alumina flooding	105
4.6	Properties of core plug used for sequential guar gum flooding	107
4.7	Simultaneous flooding process for guar gum polymer	108
4.8	Properties of core plugs used for guar gum – silica flooding	109
4.9	Properties of core plugs used for guar gum – alumina flooding	111
4.10	Properties of core plugs used for sequential gum arabic flooding	113
4.11	Simultaneous flooding of water and gum arabic polymer	114
4.12	Properties of core plugs used for gum arabic – silica flooding	115
4.13	Properties of core plugs used for gum arabic – alumina flooding	117
4.14	FTIR absorption bands for polymers	122
4.15	Simulated oil recovery values of polymers	131

LIST OF TABLES

Table	Title of Table	Page
2.1	Standard methods for measuring crude oil properties	12
2.2	Terms for interpretation of $\boldsymbol{\sigma}$ - $\boldsymbol{\varepsilon}$ diagrams	37
2.3	Basic rheological models for ideal situations	39
2.4	Summary of fluid flow behaviours	40
2.5	Corresponding shear for RPM values of the OFITE 800 Viscometer	41
2.6	Crude oil recovery mechanisms for nanoparticles and nanocomposites	67
2.7	Nigerian oil and gas sector statistics	72
3.1	Dimensions of core plugs	81
3.2	Weight percentages and corresponding quantities	84
3.3	Nanocomposite combinations used for viscosity measurements	87
3.4	Nanocomposite combinations used for core flooding	89
3.5	PVT properties of water and dead oil	92
3.6	Solution and rock properties	92
4.1	Percentage increase in polymer viscosity from nanoparticle loading	101
4.2	Properties of core plugs used for sequential xanthan gum flooding	101
4.3	Simultaneous flooding of water and xanthan gum polymer	102
4.4	Properties of core plugs used for xanthan gum – silica flooding	103
4.5	Properties of core plugs used for xanthan gum – alumina flooding	105
4.6	Properties of core plug used for sequential guar gum flooding	107
4.7	Simultaneous flooding process for guar gum polymer	108
4.8	Properties of core plugs used for guar gum – silica flooding	109
4.9	Properties of core plugs used for guar gum – alumina flooding	111
4.10	Properties of core plugs used for sequential gum arabic flooding	113
4.11	Simultaneous flooding of water and gum arabic polymer	114
4.12	Properties of core plugs used for gum arabic – silica flooding	115
4.13	Properties of core plugs used for gum arabic – alumina flooding	117
4.14	FTIR absorption bands for polymers	122
4.15	Simulated oil recovery values of polymers	131

LIST OF FIGURES

Figure	Title of Figures	Page
1.1	Primary drive- water drive and gas cap drive mechanism	2
2.1	Initial distribution of fluids in a reservoir	8
2.2	Gas-cap drive reservoir	15
2.3	Aquifer geometries	16
2.4	Combination map view	18
2.5	Different enhanced oil recovery methods	21
2.6	Macroscopic displacement improvement with polymer waterflooding	22
2.7	Structure of gum arabic	27
2.8	Chemical structure of xanthan gum	28
2.9	Structure of guar gum molecule	29
2.10	Diagram showing classification of non-newtonian flow behaviours	38
2.11	Typical group diagram of a nanoparticle	48
2.12	Sketch of alumina coated nanoparticle	59
2.13	Nanoparticle retention mechanisms in a reservoir formation	80
3.1	Schematic diagram of core flooding equipment	89
4.1	Viscosity profile of polymers at different weight percentages	93
4.2	Viscosity profile of gum arabic at different weight percentages	94
4.3	Viscosity of guar gum at different temperatures	95
4.4	Viscosity of xanthan gum at different temperatures	95
4.5	Viscosity of gum arabic at different temperatures	95
4.6	Viscosity of polymers at different brine weight percentages	96
4.7	Viscosity of xanthan gum at different shear rates	97
4.8	Viscosity of guar gum at different shear rates	97
4.9	Viscosity of gum arabic at different shear rates	97
4.10	Silica NP effect on xanthan gum viscosity	98
4.11	Alumina NP effect on xanthan gum Viscosity	99
4.12	Cupric NP effect on xanthan gum viscosity	99
4.13	Silica NP effect on guar gum viscosity	99
4.14	Alumina NP effect on guar gum viscosity	99
4.15	Cupric NP effect on guar gum viscosity	100

4.16	Silica NP effect on gum arabic viscosity	100
4.17	Alumina NP effect on gum arabic viscosity	100
4.18	Cupric NP effect on gum arabic viscosity	100
4.19	Crude oil recovery from xanthan gum	103
4.20	Oil recovery for xanthan gum – silica nanocomposite	104
4.21	Oil recovery for xanthan gum – alumina nanocomposite	106
4.22	Oil recovery for xanthan gum polymer and nanocomposites	107
4.23	Crude oil recovery for guar gum	109
4.24	Oil recovery for guar gum – silica nanocomposite	110
4.25	Oil recovery for guar gum – alumina nanocomposite	112
4.26	Oil recovery for guar gum polymer and nanocomposites	113
4.27	Crude oil recovery for gum arabic	115
4.28	Oil recovery for gum arabic – silica nanocomposite	116
4.29	Oil recovery for gum arabic – alumina nanocomposite	118
4.30	Oil recovery for gum arabic polymer and nanocomposites	119
4.31	Hydraulic flow unit of core plugs	119
4.32	Thermogravimetric analysis for polymers	120
4.33	FTIR spectra for polymers	121
4.34	Simulated xanthan gum oil recovery	128
4.35	Simulated guar gum oil recovery	129
4.36	Simulated gum arabic oil recovery	130
4.37	Comparative oil recoveries for polymers	131

LIST OF PLATES

Plate	Title of Plates	Page
3.1	Experimental materials obtained from the Niger-Delta	82
3.2	Nanoparticles and polymers used in the experiments	82
4.1	Micrograph of silicon oxide nanoparticles	123
4.2	Micrograph of aluminium oxide nanoparticles	123
4.3	Micrograph of cupric oxide nanoparticles	124
4.4	Micrograph of core plugs for xanthan nanocomposite flooding	125
4.5	Micrograph of core plugs for guar nanocomposite flooding	126
4.6	Micrograph of core plugs for gum arabic nanocomposite flooding	127

LIST OF ABBREVIATIONS

AFM	Atomic Force Microscopy
AOS	Alpha-Olefin Sulfonate
AP	Alkaline Polymer
API	American Petroleum Institute
APTES	Aminopropyltriethoxy Silane
ASP	Alkaline-Surfactant-Polymer
ASTM	American Society for Testing and Materials
ATR	Attenuated Total Reflectance
BPD	Barrels Per Day
CDG	Nano-sized Colloidal Dispersion Gels
CNT	Carbon Nanotubes
CVC	Chemical Vapour Condensation
CVD	Chemical Vapour Deposition
DCMS	Dichloro dimethyl Silane
DLS	Dynamic Light Scattering
DNA	Deoxyribonucleic Acid
DPR	Department of Petroleum Resources
DTA `	Differential Thermal Analysis
EOR	Enhanced Oil Recovery
EUR	Estimated Ultimate Recovery
FCM	First Contact Miscible
FTIR	Fourier Transform Infrared Spectroscopy
GA	Gum Arabic
GC-MS	Gas Chromatography - Mass Spectrometry
GDP	Gross Domestic Product
GG	Guar Gum
GPTMS	Glycidyloxypropyltrimethoxy Silane
HFU	Hydraulic Flow Unit
HLP	Hydrophobic and Lipophilic Polysilicon
HLPN	Hydrophobic Lipophilic Polysilicon Nanoparticles
HPAM	Hydrolyzed Poly Acrylamide
HPLC	High-Pressure Liquid Chromatography

IFT	Interfacial Tension
IOR	Improved Oil Recovery
КОН	Potassium Hydroxide
LPG	Liquefied Petroleum Gas
MCM	Multiple Contact Miscible
MWNT	Multiwalled Carbon Nanotubes
MS	Mass Spectroscopy
NMR	Nuclear Magnetic Resonance
NP	Nanoparticle
NVP	N-Vinylpyrrolidone
NWP	Neutrally Wet Polysilicon Nanoparticles
OFITE	OFI Testing Equipment
OGJ	Oil Gas Journal
OOIP	Original Oil in Place
OPEC	Organization of Petroleum Exporting Countries
PAM	Polyacrylamide
PCS	Photon-Correlation Spectroscopy
PDI	Polydispersity Index
PDMS	Polydimethylsiloxane
PEG	Polyethene Glycol
PNC	Polymer Nanoparticle Composite
PNP	Polymer Coated Nanoparticle
PSNP	Polysilicon Nanoparticle
PV	Pore Volumes
PVP	Polyvinylpyrrolidone
QD	Quantum Dots
RPM	Revolutions Per Minute
RPT	Reservoir Permeability Tester
SAC	Steam-Alternating-CO ₂
SAGD	Steam-Assisted Gravity Drainage
SDS	Sodium Dodecyl Sulphate
SEM	Scanning Electron Microscope
SFC	Supercritical Fluid Chromatography
SP	Surfactant Polymer

SPS	School of Post Graduate Studies
SSC	Simultaneous Steam-CO2
TAN	Total Acid Number
TCF	Trillion Cubic Feet
TEM	Transmission Electron Microscope
TGA	Thermo-gravimetric Analyzer
TMPM	Trimethoxysilylpropyl Methacrylate
USBM	United States Bureau of Mines Wettability Test
WAG	Water Alternating Gas
WOR	Water to Oil Ratio
WTI	West Texas Intermediate
XG	Xanthan Gum
XRD	X-Ray Diffraction

ABSTRACT

The increasing human population has given rise to greater energy demand which continues to place a burden on energy production worldwide. This has intensified the need for innovation, both in the petroleum industry and renewable energy sector. The petroleum industry has in recent years experienced the gradual disappearance of "easy oil." In addition to this, only about 30% of the original oil in place (OOIP) can be extracted using conventional techniques, leaving about 70% of crude oil in the reservoir after primary and secondary oil recoveries have been exhausted. For this reason, new approaches to oil recovery called enhanced oil recovery (EOR) have been developed to recover more oil from existing reservoirs. One of the most common methods is chemical EOR, which involves the injection of chemicals into the reservoir to increase the overall efficiency of the process. In this work, innovative mixtures of polymer nanocomposites (PNC) were explored for viscosity and core flooding experiments as a route for chemical EOR. Three polymers: xanthan gum, guar gum and gum arabic; and two nanoparticles: alumina and silica, were mixed in different proportions and used for core flooding experiments with a reservoir permeability tester (RPT). Cupric nanoparticle was used in addition to the two other nanoparticles and three polymers for viscosity tests using a viscometer. The effects of temperature, salinity, shear rate, polymer concentration and nanocomposites on viscosity were investigated. Spectral analysis of the polymers was done using Fourier-Transform Infrared (FTIR); thermal stability of the polymers was tested using thermogravimetric analyzer (TGA). Scanning Electron Microscope (SEM) was used to obtain micrographs of the nanoparticles and study the morphology of core plugs used in the flooding process. The results showed that the viscosity of the polymers increased with polymer concentration, with xanthan gum having the highest viscosity among the three polymers (1645 cP at 1.0% w/w) and gum arabic having the lowest viscosity (180 cP at 1.0% w/w). For all the nanocomposite combinations considered, the addition of the nanoparticles caused their viscosities to increase. The cupric oxide nanoparticles produced the highest effect on the viscosities of the polymer nanocomposites. As the temperature increased from 30 to 90°C, the viscosities of the polymers were observed to reduce; the polymer viscosities also reduced with salinity. In the core flooding experiments, xanthan gum, guar gum and gum arabic achieved total oil recoveries of 62.8, 54.2 and 52.5%, respectively: Eclipse software provided validation for the observed trend. Across the six PNC used for core flooding, alumina had a greater impact on oil recovery than silica. Also, xanthan gum-alumina PNC recorded the highest recovery of 72.8%. The TGA results showed that gum arabic had the greatest stability above 70°C, while xanthan gum had the lowest. It was deduced from the SEM images that each nanocomposite impaired the permeability of the core plugs to some extent. The results obtained in this work make a strong case for the adoption of polymer nanocomposites for EOR, especially for nanocomposites containing gum arabic, which is locally produced and available in large quantities.

Keywords: Enhanced oil recovery, nanocomposite, nanoparticles, polymers, viscosity