SYNTHESIS, CHARACTERIZATION, AND ANALYSIS OF LEAD-FREE INORGANIC PEROVSKITE FOR SOLAR CELL APPLICATION

BELLO, OLUWASEYI OLUWATIMILEYIN 19PCE02037

OCTOBER, 2021

SYNTHESIS, CHARACTERIZATION, AND ANALYSIS OF LEAD-FREE INORGANIC PEROVSKITE FOR SOLAR CELL APPLICATION

BY

BELLO, OLUWASEYI OLUWATIMILEYIN 19PCE02037

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) INDUSTRIAL PHYSICS (RENEWABLE ENERGY AND MATERIAL SCIENCE) IN THE PHYSICS DEPARTMENT, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA.

OCTOBER, 2021

ACCEPTANCE

This is to attest that this research work is accepted in partial fulfillment of the requirements for the award of the degree of Master of Science (M.Sc) in Industrial Physics (Renewable Energy) in the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria.

Prol. Akan B. williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, BELLO, OLUWASEYI OLUWATIMILEYIN (MATRIC NO: 19PCE02037) declare that this research was carried out by me under the supervision of Dr. Moses E. Emetere of the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

BELLO OLUWASEYI OLUWATIMILEYIN

.....

Signature and Date

CERTIFICATION

We certify that this project titled "SYNTHESIS, CHARACTERIZATION, AND ANALYSIS OF LEAD-FREE INORGANIC PEROVSKITE FOR SOLAR CELL APPLICATION" is an original research work carried out by BELLO, OLUWASEYI OLUWATIMILEYIN (19PCE02037) in the Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria under the supervision of DR. MOSES E. EMETERE. We have examined and found this work acceptable as part of the requirements for the award of the degree of Master of Science in Industrial Physics (Renewable Energy and Material Science).

Dr. Moses E. Emetere	
(Supervisor)	Signature and Date
Prof. Mojisola R. Usikalu	
(Head, Physics Department)	Signature and Date
Prof. Elijah O. Oyeyemi	
(External Examiner)	Signature and Date
Prof. Akan B. Williams	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This research is dedicated to God. I am grateful to Him for his help throughout this programme.

ACKNOWLEDGEMENTS

I give God the glory and adoration for giving me life, strength, and the impetus to start and forge on with my studies. I appreciate the Chancellor, Covenant University, Bishop David Oyedepo and the entire board of regents. I appreciate the Vice-Chancellor and the entire management team of Covenant University. I am very grateful to Professor Akan B. Williams, Dean of the School of Postgraduate Studies, Dr. Emmanuel O. Amoo, Sub-dean of the School of Postgraduate Studies, and Professor Temidayo V. Omotosho, Dean of the College of Science and Technology for their selfless effort. I wish to express my profound gratitude and appreciation to my Head of Department, Professor Mojisola R. Usikalu and former Head of Department, Professor Ahzegbobor P. Aizebeokhai, for their constructive criticisms, contributions, enthusiastic encouragements, reassurances of faith, useful and timely suggestions throughout the successful completion of study.

I am deeply grateful to my supervisor, Dr. Moses E. Emetere, without whose expertise, kindness, advice, and unyielding support, I would not have been able to complete this research work. I appreciate my family, especially my mother, sister, aunts and uncles, and grandfather, who have provided the monetary resources for this academic program. None of this would have started or continued without their support and encouragement. My heartfelt gratitude also goes to Professor M. L. Akinyemi and Dr. Maxwell Omeje for their help and encouragement during this whole program. I am grateful to the Department of Petroleum Engineering and the Department of Chemical Engineering for their permission to use their labs for this research work. I appreciate Engineer Bolujo, Engineer Daramola, Engineer Adegbite, and Mr Adeyemi for their help and expertise throughout the lab work for this research. I thank the Physics Laboratory of the Department of Physics, who provided much of the beakers for the synthesis carried out in this research. I also thank Professor Marc Burgelman for the permission to use his software, SCAPS-1D, for the electrical characterizations in this research. Further appreciation goes to Dr S. A. Akinwunmi, Dr. T. A. Adagunodo, Dr. O. O. Adewoyin, Dr. K. D. Oyeyemi, Pastor Ayara William A, Mr. A. Akinpelu, Mr Arijaje Theophilus, Mr Araka, Mr Ayanbisi, Mrs Morakinyo Ruth, Mrs Okeniyi Elizabeth, Mr Elijah Adewale, and Miss Fasuyi Nifemi. I thank all members of faculty, staff and students, of the Department of Physics, who have in various ways impacted me and contributed to the success of my study.

TABLE OF CONTENTS

CON	TENT	PAGES
COV	TER PAGE	Indeb
ттт		i
	FPTANCE	ı ii
DEC	LARATION	iii
CER	TIFICATION	iv
DED	ICATION	v
ACK	NOWLEDGEMENTS	vi
TAB	LE OF CONTENTS	vii
LIST	C OF TABLES	ix
LIST	COF FIGURES	х
ABS	ГКАСТ	xvi
СНА	PTER ONE: INTRODUCTION	1
1.1	Background to Study	1
1.2	Statement of Problem	4
1.3	Research Questions	4
1.4	Aim and Objectives of Study	5
1.5	Justification of Study	5
1.6	Scope of Study	5
CHA	PTER TWO: LITERATURE REVIEW	6
2.1	Energy Crisis in Developing Countries	6
2.2	Energy Policies and its Effects	7
2.3	Lead-free Perovskite Solar Cells	9
2.4	Physical and Optical Properties of Inorganic Perovskites	9
2.5	Structural Properties, Stability, and Efficiency	16
2.6	Progress on Inorganic Perovskite Solar Cells	23
2.7	Fabrication of Inorganic Perovskite Solar Cells: Progress and Limitations	24
	2.7.1 Bi-based Perovskites	24
	2.7.2 $Cs_2AgBiBr_6$	25
	2.7.3 Sn-based Perovskites	28
	2.7.4 Others	30

СНА	PTER 7	THREE: METHODOLOGY	31
3.1	Mater	ials	31
3.2	Synthe	esis	31
	3.2.1	Plant Extraction	31
	3.2.2	Perovskite Synthesis	34
3.3	Chara	cterization	36
	3.3.1	UV-VIS Characterization	36
	3.3.2	X-ray Florescence (XRF) Spectroscopy	37
3.4	Electr	ical Characterization from First Principles: SCAPS-1D	38
СНА	PTER I	FOUR: RESULTS AND DISCUSSION	41
4.1	Estim	ation of Band Gap Energy and Elemental Analysis	41
4.2	Estim	ation of Current Density in Perovskite Materials	46
4.3	Analy	sis of Doping Density and Flat band Potential of Perovskite Materials	58
4.4	Analy	sis of External Quantum Efficiency	70
4.5	Discus	ssion of General Results	79
СНА	PTER I	FIVE: CONCLUSION AND RECOMMENDATION	84
4.1	Summ	nary of Findings	84
4.2	Concl	usion	85
4.3	Contri	ibution to Knowledge	85
4.4	Recon	nmendation	86

REFERENCES

87

LIST OF TABLES

Table	Caption	Page
3.1	Extract colour before drying	33
3.2	Parameters for simulated solar cell structure	40
4.1	XRF results for plant extracts P1-P6	42
4.2	Band gaps, pH, and power conversion efficiencies of plant	81
	extracts, and lead-free perovskites at different thicknesses	

LIST OF FIGURES

Figure	Caption	Page
2.1	Daily peak power variation from 2016 to 2018	7
2.2	Light Absorption Spectra of (a) $CsBi_3I_{10}$ and (b) $MAPbI_3$	11
2.3	Cs ₃ Bi ₂ I ₉ Structure	11
2.4	Cs ₂ AgBiBr ₆ Structure	12
2.5	CsSn _{0.6} Ge _{0.4} I ₃ Structure	15
2.6	Efficiencies of Different Lead-free PSCs	17
2.7	PSC performances for 20 samples of CsBi ₃ I ₁₀	18
2.8	Efficiencies of Cs ₂ AgBiBr ₆ based PSCs	20
2.9	Structure of sulphide doped Cs ₂ AgBiBr ₆ device. From top to bottom:	21
	Au (orange), spiro-OMeTAD (purple), Cs ₂ AgBiBr ₆ -2xSx capping	
	layer (yellow), Cs ₂ AgBiBr ₆ -2xSx + m-TiO ₂ (light green), c-TiO ₂	
	(teal), FTO	
2.10	Efficiencies of piperazine doped CsSnI3 devices	22
2.11	Cs ₂ AgBiBr ₆ based PSC	25
2.12	Preparation of Cs ₂ SnI ₆ using solid-state method	29
3.1	Flowchart of Methodology	32
3.2	Plant extracts after heating	33
3.3	Powered form of plant extract	34
3.4	(a) Pure CaZnBr ₃ (b) Pure NaZnBr ₃ (c) Silver doped CaZnBr ₃ (d)	35
3.5	Copper doped CaZnBr ₃ (e) Silver doped NaZnBr ₃ CaZnBr ₃ with several plant extracts	36
3.6	Thermoscientific Evolution 60S UV-Visible Spectrometer	37
3.7	SCAPS-1D PV Cell Model	39
4.1	UV spectra of pure and additive enhanced CaZnBr ₃ for (a) Plant, (b) Plant 2, (c) Plant 3, (d) Plant 4	42

4.2	UV spectra of pure and doping enhanced CaZnBr ₃ with (a) Copper, and (b) Silver	44
4.3	UV spectra of pure and doping enhanced $CaZnBr_3$ with (a) Copper, and (b) Silver	45
4.4	UV spectra of $Na_2Zn_2Br_6$ and $Na_2CaZn_2Br_6$	45
4.5	(a) UV spectra of pure and Copper doped $NaZnBr_3$ (b) UV spectra of pure and Silver doped $NaZnBr_3$.	46
4.6	JV curves of simulated CaZnBr3-based solar cells with and without	47
	additive P1 with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d)10 nm	
4.7	IV curves of simulated CaZnBr ₃ -based solar cells with and without	48
,	additive P2 with perovskite thicknesses (a) $100 \mu\text{m}$, (b) $10 \mu\text{m}$, (c) 1	
	nm, and (d)10 nm.	
4.8	JV curves of simulated CaZnBr ₃ -based solar cells with and without	49
	additive P3 with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1	
	nm, and (d)10 nm.	
4.9	JV curves of simulated CaZnBr3-based solar cells with and without	50
	additive P4 with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1	
	nm, and (d)10 nm.	
4.10	JV curves of simulated CaZnBr3-based solar cells with and without	50
	additive P5 with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1	
	nm, and (d)10 nm.	
4.11	JV curves of simulated CaZnBr3-based solar cells with and without	51
	additive P6 with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1	
	nm, and (d)10 nm.	
4.12	JV curves of simulated CaZnBr3-based solar cells with and without	52
	Musa paradisiaca stem extract additive with perovskite thicknesses (a)	
	100 µm, (b) 10 µm, (c) 1 nm, and (d)10 nm.	
4.13	JV curves of simulated CaZnBr3-based solar cells with and without	52
	Isopropanol additive with perovskite thicknesses (a) 1 nm, (b) 10 nm.	
4.14	JV curves of a simulated NaCaZn ₂ Br ₆ -based solar cell with perovskite	53
	thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d) 10 nm.	

4.15	JV curves of simulated Na ₂ Zn ₂ Br ₆ -based solar cells with and without	54
	additives with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1	
	nm, and (d) 10 nm.	
4.16	JV curves of simulated Plant extract based solar cells with	55
	thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d) 10 nm.	
4.17	JV curves of simulated CaZnBr3-based solar cells with and without	55
	copper dopant with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c)	
	1 nm, and (d) 10 nm.	
4.18	JV curves of simulated CaZnBr3-based solar cells with and without	56
	silver dopant with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c)	
	1 nm, and (d) 10 nm.	
4.19	JV curves of simulated NaZnBr3-based solar cells with and without	57
	Copper dopant with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c)	
	1 nm, and (d) 10 nm.	
4.20	JV curves of simulated NaZnBr3-based solar cells with and without	57
	Silver dopant with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c)	
	1 nm, and (d) 10 nm.	
4.21	Mott Schottky curves of simulated CaZnBr3-based solar cells with	59
	and without additive P1 with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.22	Mott Schottky curves of simulated CaZnBr3-based solar cells with	60
	and without additive P2 with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.23	Mott Schottky curves of simulated CaZnBr3-based solar cells with	61
	and without additive P3 with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.24	Mott Schottky curves of simulated CaZnBr3-based solar cells with	61
	and without additive P4 with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.25	Mott Schottky curves of simulated CaZnBr3-based solar cells with	62
	and without additive P5 with perovskite thicknesses (a) 100 μ m, (b)	
	$10 \mu\text{m}$, (c) 1 nm, and (d) 10 nm.	

4.26	Mott Schottky curves of simulated CaZnBr3-based solar cells with	63
	and without additive P6 with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.27	Mott Schottky curves of simulated CaZnBr3-based solar cells with and	64
	without Musa paradisiaca stem-extract additive with perovskite	
	thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d) 10 nm.	
4.28	Mott Schottky curves of simulated CaZnBr3-based solar cells with	64
	and without Isopropanol additive with perovskite thicknesses (a) 1	
	nm, and (b) 10 nm.	
4.29	Mott Schottky curves of a simulated NaCaZn ₂ Br ₆ -based solar cell	65
	with perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d)	
	10 nm.	
4.30	Mott Schottky curves of simulated Na2Zn2Br6-based solar cells with	66
	perovskite thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d) 10	
	nm.	
4.31	Mott Schottky curves of simulated Plant-extract based solar cells	67
	with thicknesses (a) 100 μ m, (b) 10 μ m, (c) 1 nm, and (d) 10 nm.	
4.32	Mott Schottky curves of simulated CaZnBr3-based solar cells with	67
	and without copper dopant with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.33	Mott Schottky curves of simulated CaZnBr3-based solar cells with	68
	and without silver dopant with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.34	Mott Schottky curves of simulated NaZnBr3-based solar cells with and	69
	without copper dopant with perovskite thicknesses (a) 100 μ m, (b) 10	
	μm, (c) 1 nm, and (d) 10 nm.	
4.35	Mott Schottky curves of simulated NaZnBr3-based solar cells with	69
	and without silver dopant with perovskite thicknesses (a) 100 μ m, (b)	
	10 µm, (c) 1 nm, and (d) 10 nm.	
4.36	Quantum efficiency curves of simulated CaZnBr3-based solar cells	70
	with and without additive P1 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	

xiii

4.37	Quantum efficiency curves of simulated CaZnBr3-based solar cells	71
	with and without additive P2 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.38	Quantum efficiency curves of simulated CaZnBr3-based solar cells	71
	with and without additive P3 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.39	Quantum efficiency curves of simulated CaZnBr3-based solar cells	72
	with and without additive P4 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.40	Quantum efficiency curves of simulated CaZnBr3-based solar cells	73
	with and without additive P5 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.41	Quantum efficiency curves of simulated CaZnBr3-based solar cells	73
	with and without additive P6 with perovskite thicknesses (a) 100 μ m,	
	(b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.42	Quantum efficiency curves of simulated CaZnBr3-based solar cells	74
	with and without Musa paradisiaca stem additive with perovskite	
	thicknesses (a) 100 µm, (b) 10 µm, (c) 1 nm, and (d) 10 nm.	
4.43	Quantum efficiency curves of simulated CaZnBr3-based solar cells	74
	with and without Isopropanol additive with perovskite thicknesses (a)	
	1 nm, and (b) 10 nm.	
4.44	Quantum efficiency curves of simulated NaCaZn2Br6-based solar	75
	cells	
4.45	Quantum efficiency curves of simulated Na ₂ Zn ₂ Br ₆ -based solar cells	76
	with perovskite thicknesses 100 μ m, 10 μ m, 1 nm, and 10 nm.	
4.46	Quantum efficiency curves of simulated Plant extract-based solar	76
	cells with thicknesses 100 µm, 10 µm, 1 nm, and 10 nm.	
4.47	Quantum efficiency curves of simulated CaZnBr3-based solar cells	77
	with and without copper dopants with perovskite thicknesses 100 μ m,	
	10 μm, 1 nm, and 10 nm.	
4.48	Quantum efficiency curves of simulated CaZnBr3-based solar cells	77
	with and without silver dopants with perovskite thicknesses 100 μ m,	
	10 µm, 1 nm, and 10 nm.	

xiv

- 4.49 Quantum efficiency curves of simulated NaZnBr₃-based solar cells 78 with and without copper dopants with perovskite thicknesses 100 μm, 10 μm, 1 nm, and 10 nm.
- 4.50 Quantum efficiency curves of simulated NaZnBr₃-based solar cells 78 with and without silver dopants with perovskite thicknesses 100 μm, 10 μm, 1 nm, and 10 nm.

ABSTRACT

Perovskites are at the forefront of research into possible replacements for cumbersome and expensive silicon based solar cells. Lead based inorganic and organic-inorganic hybrid perovskite solar cells have been breaking records for efficiency, approaching 25% in recent years. However, these suffer from instability problems along with the possible health hazards in the long term. Hence, there has been a parallel search for lead-free, and preferably inorganic, perovskite solar cells in the hope of matching and ultimately exceeding the achievements of lead perovskite analogues. Based on in-depth literature review, this research proposed that structural modifications of perovskite using stoichiometry, dopants, and additives be used as a unique technique for enhancing the efficiency of lead-free inorganic perovskites. Four inorganic perovskites were synthesized via solution and solid-state reaction methods with several additives (such as plant extracts and Isopropanol) and dopants (such as copper and silver). The plants extracts were obtained from Buxus sempervirens, Cercis Occidentalis, Plecranthus scutellariodes, Kola Nitida, Carica Papaya, Ficus Exasperata, and Musa Paradisiaca. The optical characterization was carried out using X-ray Fluorescence spectroscopy (XRF), and Ultraviolet-Visible (UV-VIS) spectroscopy. The electronic characterization was performed using SCAPS-1D to obtain Power Conversion Efficiency (PCE), current density, voltage, doping density, flat band potential, and external quantum efficiency (QE). CaZnBr₃ had an efficiency of 7.52% at 100 µm, with a band gap of 3.658 eV. As a pure lead-free inorganic perovskite, it is already higher than existing lead-free inorganic perovskites. When Buxus Sempervirens extract was added, the efficiency improves to 9.71% at 0.2 g and 9.74% at 0.5 g. NaCaZn₂Br₆ had low efficiency because of its low short circuit current density (Jsc), steep Mott Schottky curve, and low QE. Na₂Zn₂Br₆ performs better as a double perovskite, with higher efficiency of 8.31% in its pure form than CaZnBr₃, with an optimized efficiency of 9.78% when doped with 0.2 g of Musa paradisiaca extract. In conclusion, the use of stoichiometry, dopants, and additives for structural modifications of inorganic perovskites has been proposed for obtaining new perovskite candidates and PCE optimization. It is recommended that the novel double perovskite Na₂Zn₂Br₆ be researched further using different synthetic routes.

Keywords: Perovskite, Dopants, Characterization, Synthesis, Additives, SCAPS-1D.