MYCOFLORA, AFLATOXIN ASSESSMENT AND SHELF-LIFE STUDY OF Cyperus esculentus (TIGERNUT) AND TIGERNUT MILK USING Cymbopogon citratus

BY

ALADE, MAZEEDAT BOLUWATIFE 19PCQ02045

OCTOBER, 2021

MYCOFLORA, AFLATOXIN ASSESSMENT AND SHELF-LIFE STUDY OF Cyperus esculentus (TIGERNUT) AND TIGERNUT MILK USING Cymbopogon citratus

BY ALADE, MAZEEDAT BOLUWATIFE 19PCQ02045 B.Sc Microbiology, Babcock University, Ilishan Remo, Ogun State

DISSERTATION **SUBMITTED** TO THE **SCHOOL** Α OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc)** DEGREE IN MICROBIOLOGY IN THE DEPARTMENT OF **BIOLOGICAL** SCIENCES, **COLLEGE** OF **SCIENCE** AND **TECHNOLOGY, COVENANT UNIVERSITY**

OCTOBER, 2021

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science Degree (MSc.) in Microbiology in the Department of Biological Science, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Mr. John A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ALADE, MAZEEDAT BOLUWATIFE 19PCQ02045, declare that this research titled 'MYCOFLORA, AFLATOXIN ASSESSMENT AND SHELF-LIFE STUDY OF Cyperus esculentus (TIGERNUT) AND TIGERNUT MILK USING Cymbopogon citratus" was carried out by me under the supervison of Prof. Obinna C. Nwinyi of the Department of Biological Sciences, College of Science and Technology, Covenant University. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All the sources of data and scholarly publications used in this dissertation are duly acknowledged.

ALADE, MAZEEDAT BOLUWATIFE

.....

Signature and Date

CERTIFICATION

We certify that this dissertation titled 'MYCOFLORA, AFLATOXIN ASSESSMENT AND SHELF-LIFE STUDY OF *Cyperus esculentus* (TIGERNUT) AND TIGERNUT MILK USING *Cymbopogon citratus*' is an original research work carried out by ALADE, MAZEEDAT BOLUWATIFE (19PCQ02045) in the Department of Biological Sciences, College of Science and Technology, Covenant University under the supervsion of Prof. Obinna C. Nwinyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Microbiology.

Prof. Obinna C. Nwinyi		
(Supervisor)	Signature and Date	
Prof. Solomon U. Oranusi		
(Head of Department)	Signature and Date	
Prof. Oluwatoyin R. Afolabi		
(External Supervisor)	Signature and Date	
Prof. Akan B. William		
(Dean, School of Postgraduate Studies)	Signature and Date	

DEDICATION

To almightly God I gave Him all the glory for His help and strength. For the right people you kept at every step of the way, thank you Lord. There was no way I would have made it without your word which served as a lamp and light to my feet and path.

ACKNOWLEDGEMENTS

I thank God Almighty, for sustenance, provisions and wisdom and great ideas throughout the period of this research. My sincere acknowledgement goes to Covenant University for giving me an opportunity at her citadel to fulfil a desire to acquire my master's degree in Microbiology.

My sincere appreciation goes to the Chancellor Bishop David Oyedepo, the current Vice Chancellor Professor Abiodun, H. Adebayo, the Registrar, Dr. Olusegun Omidiora, Dean of College, Professor Victor T. Omotosho and the entire management and staff of Covenant University for providing me the facilities for the successful completion of my program.

To the current Dean of the School of Postgraduate Studies, Professor Akan Williams and the postgraduate school staff, I appreciate you for the diverse training and programs organized towards capacity building for a successful postgraduate research. A very big thank you goes to the Head of Department Biological Sciences Professor Solomon U. Oranusi and staff for the constant help.

My profound gratitude goes to the Project supervisor; Prof. Obinna C. Nwinyi who impacted me with morale, knowledge, guidance and support throughout the course of this project. God bless you sir.

Furthermore, I owe appreciation to my parents Mr. A. Agboola & Mrs. Kehinde Alade, for their facilitation, emotional, spiritual and financial support. Their benevolence contributed to my success on this cause.

Finally, my sincere appreciation goes to dearest friends Ojeyemi seun, Orukotan Eunice, Agboola Omowumi, Ezenduka Chidiogo, Uzoma Dozie, especially those who supported me in impactful ways, Salami Abimbola, Akinyemi Dominion and Fasuyi Nifemi and the respondents, great appreciation to you all.

Thank you and God bless you.

TABLE OF CONTENTS

Pages

COV	VER PAGE	i
TITI	LE PAGE	ii
ACC	CEPTANCE	iii
DEC	CLARATION	iv
CER	RTIFICATION	V
DED	DICATION	vi
ACK	KNOWLEDGEMENT	vii
TAB	BLE OF CONTENTS	viii
LIST	T OF PLATES	xii
LIST	Г OF FIGURES	xiii
LIST	Г OF TABLES	xiv
LIST	Γ OF ABBREVIATIONS	xvi
ABS	STRACT	xvii
CHA	APTER ONE: INTRODUCTION	1
1.1	Background to the study	1
1.2	Statement of the problem	3
1.3	Research Questions	4
1.4	Aim and Objectives	4
1.5	Justification of the Study	4
CHA	APTER TWO: LITERATURE REVIEW	6
2.1	General characteristics of Tigernuts	6
2.2	Taxonomy of tigernut	7
2.3	Origin and Geographical distribution of Tigernut	9
2.4	Cultivation of tigernut	10
2.5	Nutritional composition of Tigernut tubers	12
2.6	Nutritional benefits of tigernut tubers	13
2.7	Tigernut and its products	14
2.8	Mould contamination of food	16
2.9	Aflatoxin	17

2.10	Favourabl	e conditions for aflatoxin contamination	18
	2.10.1	Physical factors	19
	2.10.2	Nutritional factors	19
	2.10.3	Biological factors	20
2.11	Aflatoxin	in tigernut	21
2.12	Health im	plication of aflatoxin	22
2.14	Economic	importance of aflatoxin	22
2.15	Methods t	o detect aflatoxin contamination in food crops	23
2.16	Measures	to control aflatoxin contamination	25
	2.16.1	Physical methods	25
	2.16.2	Chemical methods	26
	2.16.3	Biological methods	26
2.17	Preservati	ve potential of lemongrass	27
CHA	PTER THF	REE: MATERIALS AND METHODS	29
3.1	Material u	ised	29
	3.1.1	Culture Media	29
	3.1.2	Materials and Equipment	29
	3.1.3	Reagents and indicators	29
3.2	Methods		30
	3.2.1	Study area	30
	3.2.2	Collection of samples	31
	3.2.3	Preparation of Tigernut drink	31
	3.2.4	Preparation of Lemongrass	31
	3.2.5	Asceptic techniques	33
	3.2.6	Preparation of media	33
3.3	Isolation,	identification and characterization of fungi	33
	3.3.1	Isolation of fungi	33
	3.3.2	Identification of fungal isolates	34
3.4	Genotypic	c identification of fungal isolates	34
	3.4.1	DNA Extraction	34
	3.4.2	PCR Amplification of the ITS 1 and ITS 4 Genes of fungi isolates	35

	3.4.3	Agarose Gel Electrophoresis	35
	3.4.4	Procedure for purification of PCR amplicons for sequencing	36
	3.4.5	Genomic Analysis	36
3.5	Qualitative sc	reening for toxigenic potential of the isolates	36
	3.5.1	Determination of toxigenic potentials of the isolates by Ammonium	36
vapou	r assay		
	3.5.2	Determination of toxigenic potentials of the isolates by thin layer	37
chrom	atography metl	hod	
	3.5.3	Confirmation of mycotoxins by TLC	37
3.6	Extraction a	nd quantification of aflatoxin using High perfromance liquid	38
chrom	atography (HP	LC)	
	3.6.1	Sample preparation	38
	3.6.2	Clean up of Sample	38
	3.6.3	Sample analysis	38
3.7	Sensory evalu	ation	39
CHA	PTER FOUR:	RESULT	40
4.1	Fungal load o	f Tigernut seed	40
4.2	Fungal load o	f Tigernut drink samples	40
4.3	Morphologica	al features of the fungal isolates	41
4.4	Molecular cha	aracterization of fungi isolates	45
	4.4.1	Phylogenetic analyses	45
4.5	Qualitative a	ssessment of Toxigenic potentials of the fungal isolates using	48
Amm	onia vapour		
	4.5.1.	Determination of aflatoxin production by isolates using thin layer	49
chrom	atography		
4.6	Quantification	n of Aflatoxin in Tigernut and Tigernut drink using HPLC	50
4.7	Sensory Evalu	uation	53
4.9	Fungal load o	f Tigernut drink samples fortified with lemongrass (1 day)	55
4.10	Fungal load o	f Tigernut drink samples fortified with lemongrass (7 days)	55
4.11	Fungal load o	f Tigernut drink samples fortified with lemongrass (14 days)	56
4.12	Morphologica	al features of fungal isolates	57

4.13	The succession of fungi in the fortified Tigernut milk	62
СНА	PTER FIVE: DISCUSSION	64
СНА	PTER SIX: CONCLUSION AND RECOMMENDATION	67
5.1	Summary	67
5.2	Conclusion	67
5.3	Contribution to knowledge	67
5.4	Recommendation	67
REF	ERENCES	68
APP	ENDICES	81
Appendices A		81
Appendices B		87
Appe	endices C	89
Appe	Appendices D	

LIST OF PLATES

Figures	Description	Pages
4.1	Micrograph and culture plates of fungi isolates from tigernut	44
4.2	Agarose gel electrophoresis for the comfirmation of Amplicons	45
	of ITS genes obtained from fungal isolates	
4.3	YES plate exposed to Ammonia vapour	48
4.4	Micrograph of the thin layer chromatography	49
4.5	Micrograph and culture plates of fungi isolates from	61
	Fortified tigernut milk	

LIST OF FIGURES

Figures	Description	Pages
2.1	Big size black colour tigernut tubers	8
2.2	Big size yellow variety tigernut tubers	8
2.3	Small Size Yellow variety tigernt tubers	8
2.4	Brown variety tigernut tubers	9
2.5	Flowchart for the production of tiger nut milk	16
2.6	A typical structure illustrating the Mycotoxin Aflatoxin B	1 18
2.7	A typical structure illustrating the Mycotoxin Aflatoxin M	I ₁ 18
3.1	Map of the study, area, Sango-Ota	30
3.2	Tigernut sampled from selected markets	30
3.3	Flowchart for the production of tiger nut milk	32
3.4	Flowchart for the production of fortified tigernut milk	32
4.1	An unrooted Phylogenetic tree of identified organsim	46
4.2	An unrooted Phylogenetic tree of identified organsim	47

LIST OF TABLES

Figures	Description	Pages
2.1	Proximate composition (g/100 g) of tigernut tubers compared	11
	with other tubers	
2.2	Proximate composition (g/100 g) of tigernuts compared with nuts	11
4.1	Fungal load of tigernut seed	40
4.2	Fungal load of Tigernut drink samples	40
4.3	Morphological features of fungal isolates	42
4.4	Cloned fragments of ITS of the fungal species	46
4.5	Determination of aflatoxin production by isolates using	48
	Ammonia vapour	
4.6	Determination of aflatoxin production by isolates using thin layer chromatography	49
4.7	Total aflatoxin concentration in AOJU sample	50
4.8	Total aflatoxin concentration in AOJU(D) sample	50
4.9	Total aflatoxin concentration in BIYA sample	51
4.10	Total aflatoxin concentration in BIYA(D) sample	51
4.11	Total aflatoxin concentration in CSAN sample	52
4.12	Total aflatoxin concentration in CSAN(D) sample	52
4.13	Mean sensory scores of tigernut drink fortified with lemongrass	54

4.14	The overall sensory evaluation of tigernut milk fortified with	54
	lemongrass	
4.15	Fungal load of Tigernut drink samples fortified with lemongrass (1day)	55
4.16	Fungal load of Tigenut drink samples fortified with	56
4.17	Fungal load of Tigernut drink samples fortified with lemongrass (14days)	56
4.18a	Morphological features of the fungal isolates (1 day)	59
4.18b	Morphological features of the fungal isolates (7 days)	59
4.18c	Morphological features of the fungal isolates (14 days)	60
4.19	The succession of fungi over the storage period of 14 days	62

LIST OF ABBREVIATIONS

DEP-	Dichloromethane: ethyl acetate: propan-2-ol
HPLC-	High performance liquid chromatography
ITS-	Internal Transcribed Spacer
MEGA 7-	Molecular Evolution Genetic Analysis version 7.0
NCBI -	National Center for Biotechnology Information
NJ-	Neighbour Joining method
PBS-	Phosphate buffered saline
PCR-	Polymerase chain reaction
RF-	Retention factor
SPE-	Solid phase extraction
TEF-	Toluene/ ethyl acetate/formic acid
TLC-	Thin layer chromatography

ABSTRACT

Aflatoxins produced by Aspergillus flavus and Aspergillus parasiticus, are secondary metabolites that pose a major threat to global food security. This could result in detrimental impacts on human and animal health. In this study, the presence of aflatoxigenic fungi and aflatoxins in Cyperus esculentus L. (tigernut) seeds and tigernut milk were assessed. Also, the shelf extension using Cymbopogon citratus (lemongrass) was determined. Samples were obtained from three major dealers in Ota, Ogun State using the snowball sampling technique. The seeds were cleaned and processed into tigernut milk, thereafter stored for further studies. The organisms were identified using morphological and molecular methods using the internal transcribed spaces ITS 1 and ITS 4. Qualitative and quantitative assessments of the toxigenic potential of the fungi were carried out using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods respectively. For the shelf-life study of tigernut milk, three different formulations were used (10ml, 15ml and 20 ml of lemon grass extract). Data obtained from this study were analyzed using descriptive statistics in form of mean and standard deviation. Total fungal count in tigernut and tigernut milk ranged from 1.47×10^3 cfu/g - 6.94×10^5 cfu/ml. The predominant fungi in both samples were Aspergillus flavus (OK172340), Aspergillus orzyae (OK172339) and Aspergillus brasiliensis (OK17234). The aflatoxin levels detected ranged between 1.4 - 2.03ppb in tigernut samples while the tigernut milk samples were free of aflatoxin. Total fungal counts of the fortified tigernut milk ranged between 9.9×10^5 -1.28×10⁶ cfu/ml. The fungal isolates identified over the 14 days shelf-life storage were Aspergillus spp., Penicillium spp. and Rhizopus spp. for each day. From the results obtained from the test panel, there was a general acceptance of the sensory quality; LA104 had higher general acceptance while LA267 had the least acceptance. The shelf-life was extended for 14 days without loss in the organoleptic properties of the tigernut milk. In conclusion, the tigernut and tigernut milk analyzed had aflatoxin content below the acceptable limit 4ppb with respect to National Agency Food and Drug Administration and Control (NAFDAC) guidelines. In addition, lemongrass improved the shelf life of tigernut milk over a period of 14 days under refrigerated condition.

Keywords: Aflatoxins, Cympbogon citratus, HPLC, Tigernut, TLC