INTEGRATING AEROMAGNETIC AND REMOTE SENSING DATA FOR MINERAL POTENTIAL ASSESSMENT IN PARTS OF BENIN-ARM, ANAMBRA BASIN, NIGERIA

ONI OLUBUKOLA AINA 18PCE02034

JUNE 2021

INTEGRATING AEROMAGNETIC AND REMOTE SENSING DATA FOR MINERAL POTENTIAL ASSESSMENT IN PARTS OF BENIN-ARM, ANAMBRA BASIN, NIGERIA

BY

ONI OLUBUKOLA AINA 18PCE02034

DISSERTATION SUBMITTED TO THE SCHOOL OF POST A GRADUATE STUDIES OF COVENANT UNIVERSITY, OTA, OGUN IN PARTIAL FULFILMENT STATE. **NIGERIA** OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc)** DEGREE IN INDUSTRIAL PHYSICS (APPLIED GEOPHYSICS), IN THE OF PHYSICS, COLLEGE DEPARTMENT OF SCIENCE AND **TECHNOLOGY, COVENANT UNIVERSITY, OTA.**

JUNE 2021

Department of Physics, College of Science and Technology, Covenant University, Ota, Ogun

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Industrial Physics (Applied Geophysics) in the

Mr. John A. Philip

State, Nigeria.

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ONI OLUBUKOLA AINA (18PCE02034) declare that this research was carried out by me under the supervision of Prof. Ahzegbobor P. Aizebeokhai of the Department of Physics College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partly for the award of any degree anywhere else. Also, I declare that all sources of data and scholarly information used in the dissertation are duly acknowledged.

ONI OLUBUKOLA AINA

Signature and Date

iv

CERTIFICATION

We certify that this dissertation titled "INTEGRATING AEROMAGNETIC AND REMOTE SENSING DATA FOR MINERAL POTENTIAL ASSESSMENT IN PARTS OF BENIN-ARM, ANAMBRA BASIN, NIGERIA" is an original research work carried out by ONI OLUBUKOLA AINA (18PCE02034) in the Department of Physics (Applied Geophysics), College of Science and Technology, Covenant University, Ota, Nigeria under the supervision of Prof. Ahzegbobor P. Aizebeokhai. We have examined and found this work acceptable as part of the requirements for the award of Master (M.Sc) degree in Industrial Physics (Applied Geophysics).

Prof. Ahzegbobor P. Aizebeokhai

Project Supervisor

Prof. Mojisola R. Usikalu Head, Department of Physics

Prof. Elijah O. Oyeyemi

External Examiner

Prof. Akan B. Williams

Dean, School of Postgraduate Studies

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This project is dedicated to the Almighty God, the author and finisher of my faith, the one who made it possible for me to complete this work.

ACKNOWLEDGEMENTS

To God be the glory, for hitherto He has helped me. I acknowledge His grace, wisdom, protection and provision in the course of this work, unto its completion. I sincerely appreciate the Chancellor and Chair, Board of Regents, Dr. David O. Oyedepo, Vice Chancellor, Prof. Abiodun H. Adebayo and other Management of Covenant University for the opportunity offered to me to learn amongst knowledgeable scholars in a well conducive environment.

I gracefully appreciate the Dean and Sub-Dean, School of Postgraduate Studies, for providing a good learning platform with a well sophisticated postgraduate library section for research where we have access to unlimited printed and e-prints research materials. I deeply appreciate the Dean, College of Science and Technology, Prof. Temitayo V. Omotosho, Head, Department of Physics, Prof. Mojisola R. Usikalu, for her motherly love and guidance.

My gratitude goes to my supervisor, Prof. Ahzegbobor P. Aizebeokhai, for his contributions and efforts towards the completion of the dissertation. Also, I acknowledge and thank all the lecturers, Dr M. Omeje, Dr T. A. Adagunodo, Dr K. D. Oyeyemi, Dr O. O. Adewoyin and all members of faculty, other staff and my colleagues in the Department of Physics who have in one way or the other imparted me and contributed to the overall success of this program.

My utmost and deepest thanks go to my parents, Elder and Deaconess J. A. Oni, for their heartfelt love, encouragement, enthusiasm and ceaseless prayers and financial support towards me. They are the most important human contributors to my success story and I cannot thank them enough. Thank you for always been there; may God continue to bless you exceedingly and abundantly, more than what you can ever wish for. Also, I express my inner most gratitude to my siblings, Shade, Shola, Segun, Omowunmi and James Oni, for their support, ideas, encouragement and prayers towards the success of my study. May God continue to uphold you all in your individual lives and uplift you beyond your imaginations.

TABLE OF CONTENTS

ACCEPTANCE		ii
DEC	LARATION	iii
CER	TIFICATION	iv
DED	ICATION	v
ACK	NOWLEDGEMENTS	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
ABS	ГКАСТ	xiv
СНА	PTER ONE: INTRODUCTION	1
1.1	Background to Study	1
1.2	Statement of Problem	3
1.2.1	Research Questions	4
1.3	Aim and Objectives	4
1.4	Justification of the Study	5
1.5	Scope of Study	5
1.6	Study Area	6
1.6.1	Location and Site Description	6
1.6.2	Climate and Drainage	6
1.6.3	Geology	9
1.7	Limitations of the Study	15
1.8	Dissertation Structure	15
CHA	PTER TWO: LITERATURE REVIEW	16
2.1	Preamble	16
2.2	Basic Principles and Theory of Magnetic Method	16
2.2.1	Origin of Magnetism	16
2.2.2	Magnetostatic Force and Magnetic Dipole	17
2.2.3	Induction of Magnetic Materials	18

2.2.4	Magnetisation	20
2.2.5	Magnetic Field Intensity	20
2.2.6	Poisson Relation	21
2.2.7	Magnetic Permeability and Susceptibility	21
2.2.8	Induced Magnetization Mechanism	22
2.2.9	Magnetic Field of the Earth	23
2.2.10	Remanent Magnetization	24
2.2.11	Temporal Variation of the Earth's Magnetic Field	25
2.2.12	Geomagnetic Components	26
2.2.13	Magnetic Properties of Geological Formation	27
2.2.14	Susceptibilities of Rocks	28
2.2.15	Data Processing and Enhancement Techniques	29
2.2.15	.1 Transforms and Filters	29
2.2.15	.2 Upward Continuation and Downward Continuation	32
2.3	Principle of Remote Sensing Method	33
2.3.1	Electromagnetic Waves	34
2.3.2	Electromagnetic Spectrum	34
2.3.3	Polarisation	35
2.3.4	Doppler Effect	36
2.4	Previous Studies	38
2.4.1	Geophysical Methods for Mineral and Geological Inference	38
2.4.1.1	General Principle of Finding Buried Materials	42
2.4.1.2	2 Analysis of Magnetic Fields	42
2.4.1.3	Regional and Residual Anomaly	42
2.4.1.4	Reduction-to-Pole	43
2.4.1.5	Vertical Derivative	43
2.4.1.6	5 Analytic Signal Filtering Technique	43
2.4.1.7	Depth Estimation Using Euler Deconvolution	44
2.4.1.8	B Interpretation of Magnetic Fields	45
2.4.2	Remote Land Observation System	45
2.4.2.1	The Earth's Geomorphology	46

2.4.2.2	2 Application of Remote Sensing Method in Mineral Exploration	46
2.4.3	Structural Mapping	47
CHAPTER THREE: METHODOLOGY		48
3.1	Preamble	48
3.2	Data Available for the Study	48
3.2.1	Software Used in the Study	49
3.2.2	Acquisition of Aeromagnetic Data	50
3.2.2.1	Aeromagnetic Instruments	50
3.2.2.2	2 Field Procedure for Aeromagnetic Survey	51
3.2.3	Acquisition of Remote Sensing Data	52
3.3	Data Processing and Analysis of Aeromagnetic Data	52
3.3.1	Regional and Residual Anomaly Separation	55
3.3.2	Reduction-to-Pole (RTP)	55
3.3.3	First Vertical and Horizontal Derivatives	56
3.3.4	Analytic Signal Amplitude	57
3.3.5	Euler Deconvolution	58
3.4	Processing and Analysis of Remote Sensing Data (Landsat 8)	59
3.4.1	Colour Composites	61
3.4.2	Band Ratios	62
CHAI	PTER FOUR: RESULTS AND DISCUSSION	64
4.1	Preamble	64
4.2	Results of the Remote Sensing Data Analysis	64
4.2.1	Colour Composites	64
4.2.2	Band Ratios	67
4.2.3	Surface Lineament Mapping	72
4.3	Results of the Aeromagnetic Data Analysis	75
4.3.1	Total Magnetic Intensity	75
4.3.2	Residual Magnetic Intensity	78
4.3.3	Reduction-to-Pole at Low Latitude	80
4.3.4	First Vertical Derivative and Horizontal Derivatives	82
4.3.5	Analytic Signal	91

4.3.6	Depth-to-Basement Calculation Using Euler Deconvolution	91
4.4	Discussion of Results	97
4.4.1	Evaluation of Magnetic Field to Detect Subsurface Structures	97
4.4.2	Delineation of Surface Alteration Patterns and Identification of	
	Anomalous Patterns	98
4.3.3	Subsurface Structural Mapping	99
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS		100
5.1	Summary of Findings	100
5.2	Conclusion	101
5.3	Contributions to Knowledge	101
5.4	Recommendations	102
REFERENCES		103

LIST OF TABLES

TABL	E CAPTION	PAGE
2.1	Susceptibilities of common rocks	28
2.2	Observations using aeromagnetic and remote sensing method by different authors	39
3.1	Data types and sources	49
3.2	Aeromagnetic survey parameters	51
3.3	Structural index of basic magnetic sources models	59
3.4	Operational land imager (OLI) and thermal infrared sensor (TIRS) band	
	designations	60

LIST OF FIGURES

FIGU	RE CAPTION	PAGE
1.1	Map of Nigeria showing the study area	7
1.2	Map of the study area (NGSA Sheets 266 and 267) indicating major towns,	
	major rivers and other physical features	8
1.3	Geological map of Nigeria showing the Anambra basin and other basins	10
1.4	Geological map of the study area	11
1.5	Geological sketch showing the formations in the study area	13
2.1	Coulomb's force between two north poles of bar magnets	18
2.2	Schematic diagram of magnetic dipole	18
2.3	Schematic diagram of loop X and loop Y	19
2.4	The Earth's magnetic field	23
2.5	Magnetic force field lines from south pole to north pole	23
2.6	Schematic diagram of the geomagnetic components	26
2.7	Schematic diagram of a rectangular high pass filter	30
2.8	Schematic diagram of a rectangular low pass filter	31
2.9	Schematic diagram of a rectangular band pass filter	31
2.10	Butterworth (low pass) filter of order n=2, 8 and 16	31
2.11	Wavelengths of different bands of electromagnetic spectrum	35
2.12	Plane polarised radiation propagating in z- axis	36
2.13	An observer located at O with source S of electromagnetic radiation moving	
	with velocity	37
2.14	Doppler effect for a source in motion	37
3.1	Flow chart of aeromagnetic data processing	53
3.2	Flow chart of remote sensing data processing	61
4.1	True colour composite (Bands 4, 3 & 2) map of the study area	65
4.2	False colour composite (Bands 5, 4 & 3) map of the study area	66
4.3	Band ratio map of the study area	68
4.4	Ratio 4/2 (ferric-ion bearing) map of the study area	69
4.5	Ratio 5/6 (ferrous-ion bearing) map of the study area	70
4.6	Ratio 6/7 (OH bearing) map of the study area	71

4.7	Surface lineaments present in the study area	73
4.8	Plot of the general bearing of the surface lineaments	74
4.9	Total magnetic intensity map of the study area	76
4.10	Regional map of the study area	77
4.11	Residual magnetic map of the study area	79
4.12	Reduce-to-pole map of the study area	81
4.13	First vertical derivative (FVD) map of the study area	83
4.14	Grey shaded first vertical derivative (FVD) map of the study area	84
4.15	Second vertical derivative (SVD) map of the study area	86
4.16	Total horizontal derivative (THD) map of the study area	87
4.17	Vectorized subsurface lineaments of the study area	88
4.18	Plot of the general bearing of the subsurface lineaments	89
4.19	Lineament density map of the study area	90
4.20	Analytic signal map of the study area	92
4.21	Windowed Euler deconvolution depth to magnetic source (100 m)	93
4.22	Windowed Euler deconvolution depth to magnetic source (500 m)	94
4.23	Windowed Euler deconvolution depth to magnetic source (1000 m)	95
4.24	Windowed Euler deconvolution depth to magnetic source (2000 m)	96

ABSTRACT

The need for mineral resources for economic development is key in both developing and developed countries. However, miners usually resort to random excavation of mineral deposits without proper investigation to identify structures of interest in target areas; this usually leads to land depletion and abandonment. The aim of this study is to assess the mineral resources potential of part of the Benin-arm of Anambra basin by investigating the geophysical characteristics of the area using remote sensing and aeromagnetic data. Surface and subsurface regional structures, including intrusive bodies, contacts, faults and mineralisation, were mapped by integrating aeromagnetic and remote sensing data. The mineral bearing zones that show high prospects of mineral deposit in the region were identified. Rose diagram revealed that the surface lineament mainly aligned in the NNW-SSE direction. The orientations of the subsurface lineaments are quite similar to those of the surface lineaments; they aligned mostly in the NE-SW, N-S and E-W directions. The magnetic intensity ranged between - 431.38 nT and 399.82 nT, while reduction-to-pole magnetic intensity ranged from -416 - 664.45 nT. The first vertical derivative showed magnetic intensity which ranged from $-0.5863 - 0.9060 nT/km^2$. The total horizontal derivative magnetic intensity ranged from $-0.00031 - 0.762691 nT/km^2$, while the analytic signal showed magnetic intensity ranging from 14.0664 - 394,607.3438 nT/cm^2 . The windowed Euler deconvolution depth to magnetic source showed depth range of < 20 m to 2000 m. Many of the features delineated in the study area are at shallow magnetic source depths (< 500 m); this is a common characteristic of basement complex terrains. Deeper magnetic source depths (> 1000 m) are observed in the sedimentary terrain. Mineral exploration should be focused in areas with high lineament concentration due to the facts that lineaments are potential conduits for economics minerals deposition.

Keywords: Mineral potential, Aeromagnetic data, Remote sensing, Benin-arm