In vitro COMPARATIVE ASSESSMENT OF THE PHYTOCHEMICAL, ANTIOXIDANT, ANTIDIABETIC AND ANTIOBESITY ACTIVITIES OF SELECTED MEDICINAL PLANTS

OGUNDIPE, ADEBANKE ELIZABETH

Matriculation Number: 14CP017651 B.Sc. Biochemistry, Covenant University, Ogun State

SEPTEMBER, 2021

In vitro COMPARATIVE ASSESSMENT OF THE PHYTOCHEMICAL, ANTIOXIDANT, ANTIDIABETIC AND ANTIOBESITY ACTIVITIES OF SELECTED MEDICINAL PLANTS

BY

OGUNDIPE, ADEBANKE ELIZABETH Matriculation Number: 14CP017651 B.Sc. Biochemistry, Covenant University, Ogun State

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN BIOCHEMISTRY.

SEPTEMBER, 2021.

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science (M.Sc.) degree in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota.

Mr. John A. Philip (Secretary School of Postgraduate Studies)

Signature & Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature & Date

DECLARATION

I, OGUNDIPE, ADEBANKE ELIZABETH with matriculation number 14CP017651,

affirm that this research was carried out by me under the supervision of Prof. Ogunlana O. Olubanke of the Department of Biochemistry, Covenant University. I attest that the dissertation has not been presented either wholly or partly for the award of any degree elsewhere. All the sources of materials and scholarly publications used in the dissertation have been duly acknowledged accordingly.

OGUNDIPE, ADEBANKE ELIZABETH

Signature & Date

CERTIFICATION

I certify that this dissertation titled *"in vitro* comparative assessment of the phytochemical, antioxidant, antidiabetic and antiobesity activities of selected medicinal plants' is an original wok carried out by OGUNDIPE, ADEBANKE ELIZABETH with the matriculation number 14CP017651 in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Ogunlana, Olubanke. We have examined and found the work acceptable for the award of a Master of Science (M.Sc.) degree in Biochemistry.

Prof. Olubanke Ogunlana Supervisor

Prof. I.S. Afolabi Head of Department

Prof. J. Ajele External Examiner

Prof. Akan B. Williams Dean, School of Postgraduate Studies Signature & Date

..... Signature & Date

Signature & Date

Signature & Date

DEDICATION

This report is dedicated to the Almighty God for life, supernatural provision, divine wisdom and favour all through this Masters programme.

Also to my world best parents (Mr. and Deaconess E.A. Ogundipe) and amazing siblings for their sacrificial love, care, unending support towards my success and progress in life. May God continue to strengthen you and you shall both eat the fruit of your labour in Jesus' name.

ACKNOWLEDGMENTS

I am ever grateful to Almighty God for His unfailing love, life, wisdom, provision and divine favour all through my journey throughout this Masters programme.

My sincere appreciation goes to my parents and siblings for their unlimited love, care, prayers, support and encouragements. May God continue to strengthen you and grant you all your heart desires in Jesus' name.

My gratitude goes to the Head of Department Biochemistry, for his advice and support towards the success of the programme.

I sincerely appreciate my supervisor for her sacrifices, motherly advise, support, patience and care during the course of this project. I pray the divine favour of God locate you and your family in Jesus' name.

I am ever grateful to all the faculty and staff in the department of Biochemistry for their support towards the success of this project.

Finally, I thank my course mates, friends and to all my loved ones for their contributions and encouragements throughout my Masters programme. May you continue to experience good things in your all endeavours in Jesus' name.

TABLE OF CONTENTS

ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	x
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
ABSTRACT	xiv
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the study	1
1.2 Statement of problem	4
1.3 Justification of the study	6
1.4 Aim	8
1.5 Specific objectives	9
CHAPTER TWO	9
LITERATURE REVIEW	9
2.1 Diabetes mellitus	9
2.2 Obesity	25
2.3 Oxidative stress	34
2.4 Antioxidants	36

2.5 Phytochemistry of medicinal plants	41
CHAPTER THREE	57
MATERIALS AND METHODS	57
3.1 Equipment and materials	57
3.2 Plants collection	58
3.3 Phytochemical screening	58
3.4 Gas chromatography mass spectrometry (GC-MS	60
3.5 Total protein content	61
3.6 Antioxidant activity	61
3.7 Enzyme inhibition study	64
CHAPTER FOUR	66
RESULT	66
4.1 Voucher reference and extraction yield of the selected plants	66
4.2 Quantitative phytochemical and total protein estimation	66
4.3 GC-MS analysis	68
4.4 In vitro antioxidant activity	73
4.5 In vitro enzyme inhibitory activity	78
CHAPTER FIVE	81
5.1 Discussion	81
CHAPTER SIX	83
6.1 Summary of findings	83
6.2 Conclusion	83
6.3 Contribution to knowledge	83

6.4 Recommendation	83
REFERENCES	84
APPENDIX	100

LIST OF FIGURES

FIGURES	TITLES	PAGES
2.1 Pathophysiology and p	athogenesis of diabetes mellitus	10
2.2 Potential target for the	apeutic intervention of T1DM	13
2.3 Formation of free radio	als	36
2.4 Phyllantus amarus leav	/es	52
2.5 Moringa olifera leaves		53
2.6 Ficus exasperata leave	s	55
2.7 Brophyllum pinnatum	eaves	56
4.1 Graph of DPPH scaver	iging activity	73
4.2 Graph of ABTS scaver	iging activity	75
4.3 Effect of plants extract	s on alpha amylase activity	78
4.4 Effect of plant extracts	on pancreatic lipase activity	79

LIST OF TABLES

Tables	Titles	Pages
4.1 Phytochemical screening and t	otal protein of selected plant extracts	66
4.2 Bioactive compounds identifie	d using GCMS from plant samples	68
4.3 Mean \pm SEM of FRAP and TA	C antioxidant assay	76
4.4 IC ₅₀ values of selected medicin	nal plants	76

ABBREVIATIONS

ROS	Reactive oxygen species
RSS	Reactive sulphur species
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
FFA	Free fatty acids
TAC	Total antioxidant capacity
DPPH	2,2-diphenyl-1-picrylhydrazyl
ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
FRAP	Ferric reducing antioxidant power
NO	Nitric oxide
BSA	Bovine serum albumin
ADA	American Diabetes Association
IDF	International Diabetes Federation
BHT	Butylated hydroxyanisole
NOx	oxides of Nitrogen
FFA	Free fatty acids
GCMS	Gas Chromatography Mass Spectrometry
ВНА	Butylated hydroxyanisole
GAE	Gallic acid equivalent
F-C	Folin-Ciocalteu

ABSTRACT

Diabetes mellitus is a metabolic disorder characterised by hyperglycaemia, and obesity occurs due to excessive fats accumulation in the adipose tissue. Oxidative stress has been linked to the pathogenesis of these metabolic disorders. This study is aimed to investigate the phytochemical, antioxidant, antidiabetic and antiobesity activities of the aqueous ethanol extracts (AEEs) of the leaves of Bryophyllum pinnatum, Ficus exasperata, Moringa oleifera, and Phyllantus amarus. In vitro phytochemicals screening, gas chromatography-mass spectrometry (GC-MS) analysis, antioxidant activity, and carbohydrate and lipid inhibitory enzymes study were assessed using the established biochemical methods. The phenolic, tannin and protein contents of P. amarus were highest (p < 0.05), whereas B. pinnatum was shown to have high alkaloid content compared with other plants. GC-MS spectra identified the presence of 57, 48, 45, 40 compounds in B. pinnatum, P. amarus, M. oleifera and F. exasperata extracts, respectively. A few of the similar compounds identified are alpha terpineol, hexahydrofarnesyl acetone, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and n-Hexadecanoic acid. The 50% inhibition concentration (IC₅₀) value 0.00000475 mg/mL and 0.0242 mg/mL of F. exasperata in diphenyl-2-picrylhydrazyl (DDPH) and nitric oxide assay respectively showed that it has strong antioxidant power to scavenge free radicals. This study showed P. amarus to have the highest inhibitory(%) activity in 2,2-azino-bis(3etilbenzotiazolin)-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC) scavenging assays. However, the order of the enzyme inhibitory activity of the plants is M. oleifera > B. pinnatum > F. exasperata > P. amarus for alphaamylase activity. The inhibitory (%) activity for pancreatic lipase are in the order *M. oleifera* > P. amarus > F. exasperata > B. pinnatum. This study validates the use of M. oleifera as an effective plant-based antidiabetic and antiobesity agents for the treatment of diabetes and obesity in comparison with other selected medicinal plants.

Keywords: Antioxidant, oxidative stress, antiobesity, antidiabetics, medicinal plants