DEVELOPMENT OF HIGH-PERFORMANCE CONCRETE FROM METASTABLE CALCINED CLAY AND RICE HUSK ASH WITH SUPERABSORBENT POLYMERS

NDUKA, DAVID OBINNA 17PCB01679

MARCH, 2022

DEVELOPMENT OF HIGH-PERFORMANCE CONCRETE FROM METASTABLE CALCINED CLAY AND RICE HUSK ASH WITH SUPERABSORBENT POLYMERS

BY

NDUKA, DAVID OBINNA 17PCB01679 B.Sc Building, University of Lagos, Akoka M.Sc Construction Technology, University of Lagos, Akoka MNIOB, R. Bldr. (CORBON: F.2132)

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN BUILDING TECHNOLOGY (BUILDING STRUCTURES) IN THE DEPARTMENT OF BUILDING TECHNOLOGY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

MARCH, 2022

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Building Technology (Building Structures) in the Department of Building Technology, College of Science and Technology, Covenant University, Ota, Nigeria

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, NDUKA, DAVID OBINNA (17PCB01679), declare that this research was carried out by me under the supervision of Prof. Olabosipo I. Fagbenle and Dr. Babatunde J. Olawuyi of the Department of Building Technology, College of Science and Technology, Covenant University, Ota, Nigeria and Department of Building, School of Environmental Technology, Federal University of Technology, Minna, Niger State, Nigeria, respectively. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

NDUKA, DAVID OBINNA

Signature and Date

CERTIFICATION

We certify that this thesis titled "DEVELOPMENT OF HIGH-PERFORMANCE CONCRETE FROM METASTABLE CALCINED CLAY AND RICE HUSK ASH WITH SUPERABSORBENT POLYMERS" is an original research work carried out by NDUKA, DAVID OBINNA (17PCB01679) in the Department of Building Technology, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Olabosipo I. Fagbenle and Dr. Babatunde J. Olawuyi. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Building Technology (Building Structures).

Prof. Olabosipo I. Fagbenle Main Supervisor

Dr. Babatunde J. Olawuyi Co-Supervisor

Prof. Olabosipo I. Fagbenle Head of Department

Prof. Festus A. Olutoge External Examiner

Prof. Akan B. Williams Dean, School of Postgraduate Studies Ballsony.

Signature/Date

26/02/'22 Signature/Date

Signature/Date

Signature/Date

Signature/Date

DEDICATION

I wholeheartedly dedicate this thesis to the Almighty Jehovah for his manifold wisdom, sound mind, guidance, strength, and healthy life bestowed on me throughout this study and beyond according to His eternal purpose.

ACKNOWLEDGEMENTS

To faithful God alone be all glory, adoration, praise and honour, the author and finisher of my life, who has endowed me to accomplish this great feat in life and career. The journey of this research began with divine inspiration. He guided me and shaped my understanding of how natural and industrial by-products have been wasted and created environmental hazards with ideas for recycling for sustainable product development. I am sincerely grateful to Him.

I most reverentially acknowledge our dear father, the Chancellor and Chairman of the Board of Regents, Covenant University, Dr. David O. Oyedepo, whose vision and values provided a blossoming platform to fulfil my career. I also sincerely acknowledge the Covenant University management team led by our amiable Vice-Chancellor, Prof. Abiodun H. Adebayo, for his drives toward the actualisation of the 1-of-10-in-10 mandate and for putting policies and strategies in place which gave birth to this research. I equally express my profound gratitude to the Registrar, Dr. Oluwasegun P. Omidiora, for his support and contribution to the drive of the University's **CORE VALUES** and the vision 10-2022 mandate. I truly appreciate the Dean, School of Postgraduate Studies (SPS), Prof. Akan B. Williams, and the Sub-Dean SPS, Dr. Emmanuel O. Amoo, for their unalloyed support and contribution at various levels of this research. I would like to appreciate the Dean, College of Science and Technology, Prof. Temidayo V. Omotosho and the Head of Department, Building Technology, Prof. Olabosipo I. Fagbenle, who also doubles as my main supervisor. Words are inadequate to expatiate how grateful I am to you, Sir. Your unwavering work, quality mentorship, unceasing encouragement, germane ideas and unflagging follow-up in the course of this research was apposite in birthing this output.

My unfathomed gratitude goes to the indefatigable co-supervisor, Dr. Babatunde J. Olawuyi, for his detailed inputs in this study. Cognisant of note is the sacrifices made at travelling down from Minna, Niger State, to guide the laboratory works and at the various stages of oral presentations. I recognise the help of Prof. Timothy O. Mosaku, the first appointed main supervisor, who bowed out of the teaching and research service of the University with joy after he meritoriously reached the age criteria for a professor. Sir, you helped me find my footing as I started this process. May God continue to renew your strength and pour His unstoppable blessings on you. Many thanks to Covenant University Centre for Research, Innovation, and Development (CUCRID), headed by Prof. Emeka E. J. Iwela for the Seed Grant offered me to complete the advanced quantitative analyses of the study samples. Finally, my sincere gratitude goes to Dr. Belén G. Fonteboa, who accepted me as a visiting researcher to undertake my benchwork at the University of A Coruña, Spain. Although the trip was aborted due to the Covid-19 pandemic yet, your interest in my research and willingness to cooperate to achieve a measure of success is commendable.

I am grateful for the vital input and contribution to this research by the former Heads of Building Technology Department, Dr. James D. Owolabi and Asso. Prof. Lekan M. Amusan. In the same vein, I cannot but express my sincere appreciation to the members of the Postgraduate Committee in the Building Technology Department for their timely response and action at various stages of this research. My inestimable thanks go to the College of Science and Technology Postgraduate Coordinator, Prof. Oluwatayo A. Adedapo and the past and present Building Technology Department Postgraduate Coordinators, Dr. Ignatius O. Omuh and Dr. Patience F. Tunji-Olayeni and all other Faculty and Staff of the Building Technology Department for their innumerable support and painstaking contribution to this research. I especially want to thank Dr. Opeyemi O. Joshua, who provided invaluable contact for the co-supervisor. Your encouragement to write this thesis made me confident that the topic was worthy of investigation. Also of note are the suppliers of the superplasticiser- Masterglenium Sky 504 by BASF Limited, West Africa facilitated by Mr. Adesola Mofikoya; superabsorbent polymers by SNF Floerger-ZAC de Milieux, France and Dr. Charles C. Osadebe of Nigerian Building and Road Research Institute (NBRRI), Ota who expediated the release of 100 mm metal concrete cubes. The technical assistance of the laboratory staff at the Departments of Building Technology, Civil Engineering, Chemical Engineering, Petroleum Engineering and Chemistry, Covenant University is highly appreciated.

Furthermore, I wish to express my profound gratitude to my precious late parents, Mr. & Mrs. Philemon and Martina Nduka; your fathomless love and desire for me to succeed in life, particularly in education, yielded this accomplishment. Continue to rest in the Lord until we meet to part no more, Papa and Mama. My heartfelt gratitude goes to my siblings, especially my only brother, Mr. Levi Nduka. He had unconditionally supported and protected me in every decision I made in life since I was young. My other siblings and their husbands, Mr. & Mrs. late Maurice and Chinyere Philip, Mr. & Mrs. Paschal and Oluchi Onyekachi, Mr. and Mrs. Julius and Ifeoma Raphael, Mr. & Mrs. Anslem and Ngozi Nyeaka, Mr. & Mrs. Chigozie and Chinenye Alaegbu, Rev. & Dr. (Mrs.) Kingsely and Onyinyechi Onuoha and Ms Osinachi Nduka, your enormous sacrifices to see me climb the ladder of life successfully are worthy of thanks. I am proud of you

all at all times of my life. Finally, thankfulness goes to my wife - Ezinne and children - Darrel, Donald, and Davina, for your understanding when I had to share the attention I ought to give to you all with my research work. Without your support, love, and prayers, this thesis would not have been accomplished. God bless you all richly. To God alone be all the glory here on earth and beyond forever and ever. Amen.

TABLE OF CONTENTS

CONT	TENTS	PAGE
COVE	CR PAGE	Ι
TITLE	E PAGE	II
ACCE	CPTANCE	III
DECLARATION	IV	
CERT	IFICATION	V
DEDI	CATION	VI
ACKN	IOWLEDGEMENTS	VII
TABLE OF CONTENTS		Χ
LIST OF FIGURES LIST OF TABLES		XIV
		XVII
LIST (OF SYMBOLS	XVIII
ABST	RACT	XXIII
СНАР	TER ONE	1
INTRO	ODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Research Problem	4
1.3	Research Questions	7
1.4	The Research Aim and Objectives	8
1.5	Justification of the Study	8

1.5	Justification of the Study
16	Scope and Delimitation of the Study

1.6	Scope and Delimitation of the Study	10
1.7	Outline of the Thesis	11

13

CHAPTER TWO LITERATURE REVIEW

ITERATURE REVIEW	13
2.1 Preamble	13
2.2 Concrete	13
2.3 Concept of High-Performance Concrete (HPC) and High-Strength Concrete (HSC)	14
2.4 Application of HPC	16
2.5 Classes of High-performance Concrete	17
2.6 High-performance Concrete Constituent Materials	18
2.6.1 Cementitious materials	19
2.7.2 Aggregates	19
2.7.3 Chemical admixtures	20
2.7.4 Superabsorbent polymers (SAP)	21
2.7 Mix Design for HPC	25
2.8 Concept of Clay and Mineralogy	27
2.9 Clay Mineral Structures	29
2.9.1 Kaolinite	31
2.9.2 Illite	32
2.9.3 Montmorillonite	33
2.10 Metastable Calcined Clay and Rice Husk Ash in Concrete	35

2.11 Hydration of Calcined Clay and RHA in HPC	40
2.12 Mechanical Properties of Calcined Clay and RHA in HPC	43
2.13 Durability Properties of Calcined Clay and RHA in HPC	46
2.14 Powers' Model	50
2.15 Microstructural Properties of Calcined Clay and RHA in HPC	54
2.16 Challenges of HPC	54
2.17 Built Environment Sustainability and Sustainable Development Goals (SDGs)2.17.1 Goal 9: Industry, Innovation and Infrastructure- Build Resilient Infrastructure,	55
Promote Sustainable Industrialisation and Foster Innovation.	58
2.17.2 Goal 12: Ensure Sustainable Consumption and Production Patterns	59
2.17.3 Goal 13: Take Urgent Action to Combat Climate Change and its Impact	59
2.18 Gaps Identified in the Reviewed Literature	60
2.19 Summary	71
CHAPTER THREE	72
METHODOLOGY	72
3.1 Preamble	72
3.2 Research Design	72
3.3 Materials	73
3.3.1 Binders (BS EN 197-1, 2011 and NIS 444-1, 2018)	73
3.3.2 Aggregates	75
3.3.3 Water (BS EN 1008)	76
3.3.4 Chemical admixture (EN 934-2)	76
3.3.5 Superabsorbent polymer (SAP)	77
3.4 HPC Mixtures	78
3.5 Experimental Procedures	79
3.5.1 Characterisation	80
3.5.2 Concrete production	85
3.6 Fresh Properties of HPC (Workability: BS EN 12350-5)	86
3.7 Density and Porosity of HPC	88
3.8 Early-age Strength Properties of HPC	89
3.8.1 Setting times test	89
3.8.2 Strength development and degree of hydration of HPC with MCC and RHA	89
3.9 Mechanical Properties Tests 2.0.1 Communication attached (DS EN 12200.2)	91
5.9.1 Compressive strength (BS EN 12590-5)	92
3.9.2 Splitting tensile strength and flexural strength tests (BS EN 12390-6)	93
3.9.5 Flexural strength lest (BS EN 12390-3)	95
3.10 Durability Properties Tests 3.10.1 Water observation (EN_P_1007.6)	90
5.10.1 Water absorption (EIN, B. 1097-0) 2.10.2 Source invity (A STM C 1585.04)	90
3.10.2 Supplify (ASTREC 1363-04) 3.10.3 Chemical attacks	9/ 00
3.10.3 Chemical allocks 3.11 Modelling of the Mechanical Rehaviours and Curve fitting	77 100
3.12 Microstructural Tests on HPC mixtures	100
3.12 INFOSTICUTIAL LESIS OF THE CHIRALITES	103
3 12 2 SFM analysis of HPCs	104
3 13 Summary	104
site Summing	105

CHAPTER FOUR	106
RESULTS AND DISCUSSION	106
4.1 Preamble	106
4.2 Characterisation of Constituent's Materials	106
4.2.1 PSD of fine and coarse aggregates	106
4.2.2 PSD and BET analyses of cementitious materials	108
4.2.3 Chemical, Thermal and Microstructure Analyses of Binders	112
4.3 Fresh and Setting Times Properties	126
4.3.1 Slump flow test	126
4.3.2 Setting times of HPC with MCC or RHA and fitting into Powers' regression line	128
4.4 Degree of Hydration and Early Strength of MCC or RHA-Based HPC Mortar	130
4.5 Early Age Strength Development of HPC Mortar	133
4.6 Mechanical Properties of HPC Modified with MCC or RHA	136
4.6.1 Density of HPC	136
4 6.2 Porosity of HPC	139
4.6.3 Compressive strength of HPC with MCC and RHA	141
4 6 4 Splitting tensile strength of HPCs with MCC or RHA	146
4 6 5 Flexural strength of HPCs with MCC or RHA	149
4.7 Durability Properties of HPC Modified with MCC or RHA	155
4.7.1 Water absorption of HPCs	156
472 Sorptivity of HPCs	158
4.7.3 Chemical durability: acid attack sulphate attack and chloride attack on HPCs	164
4.8 Modelling of the Mechanical Behaviours and Curve-fitting of HPCs	174
4.9 Microstructural Tests on Hardened HPC Mixtures	178
4.9.1 SFM and FDX analysis	178
492 XRD analysis	184
4.10 Summary	188
4.10 Summary	100
CHAPTER FIVE	189
CONCLUSION AND RECOMMENDATIONS	189
5.1 Preamble	189
5.2 Summary of Findings	189
5.3 Conclusion	191
5.3.1 Physical properties of binders	191
5.3.2 Chemical, mineral phases and thermal efficiency of binders	192
5.3.3 Fresh properties, early degree of hydration and compressive strength of HPC mor	tar
5.3.4 Mechanical properties of hardened HPC	193
5.3.5 Durability properties of HPC	194
5.3.6 Modelling of mechanical behaviours and Curve-fitting of HPCs	195
5.3.7 Chemical and microstructural behaviour of hardened HPC	195
5.4 Contributions to Knowledge	196
5.5 Recommendation	197
5.6 Limitations of the Study	198
5.7 Areas for Further Research	108
	170

REFERENCES	199
APPENDICES A: PHYSICAL AND MICROSTRUCTURAL PROPERTIES OF	
BINDERS AND C66/67 HPC WITH MCC AND RHA	219
APPENDIX B: MECHANICAL BEHAVIOUR OF C66/67 HPC WITH MCC AND RH	Α
	227
APPENDIX C: EDX ATOMIC AND WEIGHT CONCENTRATION OF HPCS AND	
MINERALOGICAL PHASES OF RAW MCC AND RHA, CONTROL, MCCC-10,	
MCCC-20, RHAC-10 AND RHAC-20 HPCS AT 90 DAYS	231

LIST OF FIGURES

FIGURES	PAGE
Figure 1.1: Strategies for carbon emission reduction	6
Figure 2.1: Water absorption types of aggregate	20
Figure 2.2: Schematic diagram of (a) 1:1clay based minerals (b) 2:1clay based minerals	(c) the
tetrahedral sheet (d) the octahedral sheet (e) tetrahedron (Si_2O_4) and (f) an octahedron (R	2^{2+} O6)30
Figure 2.3: The structure of kaolinite	32
Figure 2.4: The structure of illite	33
Figure 2.5: The structure of montmorillonite	34
Figure 2.6: An overview of the structure of this study	70
Figure 3.1: Binders (a) Metastable calcined clay (MCC) (b) Rice husk ash (RHA), and (d	2)
Portland cement (CEM II)	75
Figure 3.2: Aggregates: (a) Fine aggregate (b) Coarse aggregate	76
Figure 3.3: Superplasticiser- Masterglenium Sky 504	77
Figure 3.4: Physical properties tests set up (a) Aggregate impact value (b) PSD sieve sha	.ker -
sieving method (c) Le Chatelier apparatus	81
Figure 3.5: Slump flow test setup (a) Flow table with a cone, Tapping rod and measuring	g tape (b)
Concrete flow measuring details	88
Figure 3.6: Degree of hydration test setup	91
Figure 3.7: Compressive strength test setup	93
Figure 3.8: Splitting tensile strength test setup	94
Figure 3.9: Flexural tensile strength test setup	95
Figure 3.10: Water absorption test setup: (a) Drying of HPC specimens with double-leaf	digital
oven and (b) Specimen weighing balance	97
Figure 3.11: Sorptivity test setup (a) drying of samples (b) samples exposed to capillary	action in
the water, and (c) sample weighing	98
Figure 3.12: Samples of HPC hardened cubes exposed to chemical attacks	100
Figure 4.1: Particle size distribution of aggregates	107
Figure 4.2: Particle size distribution of binders by the intensity	109
Figure 4.3: Particle size distribution of binders	110
Figure 4.4: BET DA Plots: (a) CEM II; (b) MCC; (c) RHA	111
Figure 4.5: The SEM micrographs and EDX peaks and oxide compositions of CEM II	114
Figure 4.6: The SEM micrographs and EDX peaks and oxide compositions of MCC	115
Figure 4.7: The SEM micrographs and EDX peaks and oxide composition of RHA	116
Figure 4.8: XRD peaks of the binder. (a). CEM II; (b). MCC; (c). RHA	118
Figure 4.9: FTIR/ATR spectrum of binders: (a). CEM II; (b). MCC; (C). RHA	122
Figure 4.10: TGA curves; (a) MCC; (b). RHA	125
Figure 4.11: Slump flow of HPC made with different SCM contents: (a).MCC; (b).RHA	126
Figure 4.12: Initial and finals setting times of HPC mortars; (a). RHA-based; (b).MCC-b	ased 128
Figure 4.13: Setting times (initial and final) plot of control HPCs	129
Figure 4.14: Early age degree of hydration of HPC mortars (a). MCC-based; (b). RHA-b	ased 131
Figure 4.15: Early compressive strength of HPC at different curing days. (a).MCC; (b). I	RHA 134

Figure 4.16: Early compressive strength of HPC at different logarithm curing days, (a).MCC;	125
(D).KHA	135
based	138
Figure 4.18: Compressive strength development of HPCs with varied SCM contents.	142
Figure 4.19: Mean compressive strength of HPCs against SCM contents. (a)MCC-based; (b).	
RHA-based	143
Figure 4.20: Splitting tensile strength results of HPCs at different treatments with (a) MCC ar	nd
(b). RHA	147
Figure 4.21: Mean compressive strength versus splitting tensile strength of MCC/RHA-based	l
HPCs	149
Figure 4.22: Flexural strength of HPCs at different treatment conditions with (a) MCC& (b)	
RHA	150
Figure 4.23: Mean compressive strength versus flexural strength of MCC/RHA-based HPCs	151
Figure 4.24 : Water absorption development of HPCs at varied curing ages.	157
Figure 4.25: Sorptivity characteristics of MCC-based HPCs.	159
Figure 4.26: Sorptivity characteristics of RHA based HPCs. (a) 28-days; (b). 56-days; (c). 90)_
days	162
Figure 4.27: Effect of SCM contents on HPCs weight loss in water. (a). MCC-based; (b). RH.	A-
based	165
Figure 4.28: Effect of SCM contents on HPCs weight loss in an acid environment. (a).MCC;	(b).
RHA	166
Figure 4.29: Effect of SCM contents on HPC weight loss in sulphate environment. (a).MCC;	
(b).RHA	167
Figure 4.30: Effect of SCM contents on HPC weight loss in a chlorine environment. (a). MCC	Ζ;
(b). RHA	168
Figure 4.31: Compressive strength of Water cured HPCs. (a). MCC-base; (b).RHA-based	170
Figure 4.32: Compressive strength of HPCs cured in an acid environment. (a). MCC; (RHA)	171
Figure 4.33: Compressive strength of HPCs cured in sulphate environment. (a). MCC; (b). RI	ΗA
	172
Figure 4.34: Compressive strength of HPCs cured in a chlorine environment. (a). MCC; (b).	
RHA	173
Figure 4.35: Compressive strength against the gel/space ratio for HPC mortar cubes	177
Figure 4.36: SEM imagess and EDX peaks of control HPC at 90 days.	179
Figure 4.37: SEM micrographs and EDX peaks of MCCC-10 HPC at 90 days	180
Figure 4.38: SEM micrographs and EDX peaks of MCCC-20 HPC at 90 days	181
Figure 4.39: SEM micrographs and EDX peaks of RHAC-10 HPC at 90 days.	182
Figure 4.40: SEM micrographs and EDX peaks of RHAC-20 HPC at 90 days.	183
Figure 4.41: XRD peaks of the hardened control sample at 90 days	185
Figure 4.42: XRD peaks of the hardened MCCC-10 sample at 90 days	185
Figure 4.43: XRD peaks for hardened MCCC-20 sample at 90 days	186
Figure 4.44: XRD peaks of the hardened RHAC-10 sample at 90 days	187
Figure 4.45: XRD peaks of the hardened RHAC-20 sample at 90 days	187
Figure B1: MCC Content vs Compressive Strength of HPC	227

Figure B2: RHA Content vs Compressive Strength	228
Figure B3: MCC Content vs Splitting Tensile Strength	228
Figure B4: RHA Content vs Splitting Tensile Strength	229
Figure B5: MCC Content vs Flexural Strength	229
Figure B6: RHA Content vs Flexural Strength	230
Figure C-1: Mineralogical phases of (a) Raw MCC, (b) Raw RHA, (c) Control, (d) MCCC	-10, (e)
MCCC-20, (f) RHAC-10, (g) RHAC-20 HPCs at 90 days	238

LIST OF TABLES

TABLES PAG	GES
Table 2.1: Structures that adopted HPC technology	16
Table 2.2: Types of high-performance concrete	18
Table 2.3: Tabulated summary of empirical studies on the use of calcined clay in mortar and	
concrete	62
Table 3.1: Mix constituents of HPC with MCC	78
Table 3.2: Mix constituents of HPC with RHA	79
Table 4.1: Summary of physical properties of aggregates	108
Table 4.2: Summary of physical properties of binders	110
Table 4.3: Oxide composition of binder constituents	113
Table 4.4:Setting times and strength developments of MCC and RHA-based HPC Mortar	130
Table 4.5: Influence of MCC and RHA binder types on the degree of hydration of HPC	132
Table 4.6: Summary of the trendline for early strength developments of HPC mortars	136
Table 4.7: Porosity of HPC samples containing MCC	140
Table 4.8: Porosity of HPC samples containing RHA	140
Table 4.9: Multivariate tests on MCC HPC based mechanical properties	152
Table 4.10: Tests of between-subjects' effects on MCC HPC based mechanical Properties	153
Table 4.11: Multivariate tests on RHA-based mechanical properties	154
Table 4.12: Tests of between-subjects' effects on RHA HPC based mechanical properties	155
Table 4.13: Summary for sorptivity correlation coefficient of MCC and RHA-blended HPCs	164
Table 4.14: Modelling the MCC and RHA Influence on Mechanical Behaviour of HPCs	175
Table A1: EDX oxide compositions of RHA	224
Table A2: EDX oxide compositions of MCC	224
Table A3: EDX oxide compositions of RHA	225
Table A4: Quantitative analysis of mineral phases of CEMII, MCC and RHA	225
Table C1: EDX atomic and weight concentration (%) of control HPC at 90 days	231
Table C2: EDX atomic and weight concentration (%) of MCCC-10 HPC at 90 days	232
Table C3: EDX atomic and weight concentration (%) of MCCC-20 HPC at 90 days	232
Table C4: EDX atomic and weight concentration (%) of RHAC-10 HPC at 90 days	233
Table C5: EDX atomic and weight concentration (%) of RHAC-20 HPC at 90 days	234

LIST OF SYMBOLS

\propto_c	Degree of hydration of binder
α_{max}	Ultimate degree of hydration
fc,cube	Cube compressive strength (N/mm ²)
$f_{c,cube28}$	28th day cube compressive strength (also known as f_c 28)
fc,cyl	Cylinder compressive strength (N/mm ²)
KBolomey	Material constant given by the Bolomey's formula (A)
Rc_{28}	Compressive strength of standard mortar after 28 days of curing (N/mm ²)
V_m	Total surface area of the solid phases is related to the computed cement
	composition
X _{pc}	Gel-space ratio of the HPC mortar paste
dmax	Maximum size of aggregate
fc	Characteristic strength obtained (also known as fck) - (N/mm ²)
f cm	Mean cylinder compressive strength (N/mm ²)
fcr	Target strength at maturity (often 28 days) - (N/mm ²)
fct.fl	Flexural tensile strength
fct.sp	Splitting tensile strength
fctk	Characteristic tensile strength
fctm	Mean value of tensile strength (N/mm ²)
νс	Specific volume of anhydrous binder (i.e., binary or ternary)
wn	Non-evaporable water
$ ho_c$	Relative density of the cementitious material
В	Second material constants by Bolomey
σ	Standard deviation
n	Porosity

ABBREVIATIONS

ACI	American Concrete Institute
ACV	Aggregate crushing value
AEC	Architecture, Engineering, and Construction
AFS	Acetone formaldehyde sulphide
AGS	Autogenous shrinkage
AIV	Aggregate impact value
Al-MAS-NMR	Nuclear magnetic resonance spectroscopy
ASTM	American Society for Testing and Materials
BET	Brunauer–Emmett–Teller
b _{wob}	by weight of binder
b _{woc}	by weight of cement
BSI	British Standard Institute
Ca(OH) ₂	Calcium hydroxide
CaCl ₂	Calcium chloride
Cc	Coefficient of gradation
CEM I	Cement type I
CEM II	Cement type II
CO_2	Carbon dioxide
CS	Chemical shrinkage
C-S-H	Calcium-silicate-hydrate
Cu	Coefficient of uniformity
D ₁₀	Cumulative 10% passing

D ₅₀	Cumulative 10% passing
D ₉₀	Cumulative 90% passing
EDX	Energy Dispersive X-ray
FA	Fly ash
FHWA	Federal Highway Administration of United States Department of Transport
FM	Fineness modulus
FTIR	Fourier Transmission Infra-red Spectroscopy
GGBS	Ground granulated blast-furnace slag
GHG	Greenhouse gases
HCL	Hydrochloric acid
HDC	High-durability concrete
HES	High early strength
HESC	High-early strength concrete
HPC	High-performance concrete
HPM	High performance mortar
HSC	High strength concrete
HVFA	High-volume fly ash concrete
IC	Internal curing
IC-agent	IC agent
ICP-MS	Inductive coupled plasma spectrometry
LOI	Loss on ignition
LWA	Lightweight aggregates
MCC	Metastable calcined clay

MIP	Mercury Intrusion porosimetry
МК	Metakaolin
Na ₂ SO ₄	Sodium sulphate
NBRRI	Nigerian Building and Road Research Institute
NSC	Normal strength concrete
PC	Portland cement
PCE	Polycarboxylate Ether
рН	Power of hydrogen (it has a numeric value defined as a negative base 10 logarithm of the molar concentration of hydrogen ions). This is a measure of acidity (< 7) and alkalinity (> 7).
PMS	Melamine sulfonate
PNS	Poly (naphthalene sulfonate)
PR	penetration resistance
PSD	Particle size distribution
RH	Relative humidity
RH ₇	Factor Rate of hydration based on 7th-day degree of hydration for reference mixtures
RHA	Rice husk ash
RPC	Reactive powder concrete
SAP	Superabsorbent Polymers
SCC	Self-consolidating concrete
SCM	Supplementary cementitious materials
SCMs	Supplementary cementitious materials
SDGs	Sustainable Development Goals xxi

SEM	Scanning Electron Microscopy
SF	Silica fume
SFRHPC	Self-compacting Fibre Reinforced High-Performance Concrete
SHRP	Strategic Highway Research Programme
SPSS	Statistical Package for Social Sciences
t ₁	Early age at the time of one-day curing
t _d	Early age duration of curing after casting taken as greater than 1 and up to day 10
UHPC	Ultra-high-performance concrete
VES	Very early strength
VHS	Very high strength
W	Mixing water
W/B	Water: binder ratio
W/C	Water: cement ratio
WA	Water absorption capacity
XRD	X-ray diffraction
XRF	X-ray fluorescence

ABSTRACT

The research was conducted to determine the potential use of metastable calcined clay (MCC) as a supplementary cementitious material (SCM) in a binary binder for high-performance concrete (HPC) production. The attractive properties of calcined clay based on literature have influenced an SCM choice in concrete production. Therefore, to improve the performance of the structural elements regarding increasing height, span length, and load, a thermally activated MCC of Nigerian origin gave a point of view to more investigation and compared with rice husk ash (RHA). Different HPC mixtures at 5-30% with MCC or RHA content of cement replacements of five steps intervals were produced with superabsorbent polymers (SAP) introduced as an internal curing agent. The water-binder ratio (W/B) of all the mixes was kept constant at 0.3 while Masterglenium Sky 504, a polycarboxylate ether-based superplasticiser (PCE), was used to improve the HPCs workability. To obtain the properties of the cementitious materials, the chemical composition, mineral phases, morphology, calcination efficiency, and physical properties were quantitatively analysed using the advanced techniques of X-ray fluorescence (XRF), scanning electron microscopy/energy dispersive x-ray (SEM/EDX), X-ray diffraction (XRD), Fourier transform infrared/Attenuated total reflection (FTIR/ATR), Thermogravimetric analysis (TGA), laser particle sizing and Brunauer-Emmett-Teller (BET) nitrogen absorption method. The MCC's effect on the workability, early-age degree of hydration, early-age compressive strength, hardened mechanical properties (compressive, splitting tensile and flexural strengths), durability (water absorption, sorptivity, and chemical attack), and microstructure (morphology and crystalline phases) of hardened MCC based HPCs samples were determined. The determined early-age compressive strength of HPC mortar was further curve-fitted into Powers' model to assess the relationship between compressive strength and gel/space ratio. All the properties of HPCs containing MCC were compared to those of PC mixes. The XRF result shows that the chemical oxide composition of MCC confirmed the pozzolanic material requirements with recorded high useful oxides content. At the same time, the SEM image presents particles of broad, solid masses with a wider surface area of irregular shape. The XRD results show that the MCC was a major illite-based clay mineral calcined at a maximum temperature of 650 °C, as revealed by the TGA. The MCC addition increases the slump flow of HPCs at certain cement replacement with a comparative early-age compressive strength with the control. The MCC incorporation at 10% cement replacement best improved the porosity of HPCs at a later age resulting in increased mechanical, durability, and microstructural properties of tested samples. A simulation of MCC and RHA contents into the Powers' model signalled compatibility for predicting strength development trends in the HPC with SAP. The study has shown that MCC and RHA, which are locally sourced, can be used to produce Class I (50 - 75 MPa) HPC with enhanced mechanical, durability and microstructural properties. Therefore, it is recommended that MCC addition within 10% binder content be adopted for low W/B Class I HPC at no deleterious results on mechanical and microstructural properties of the concrete.

Keywords: High-performance concrete, metastable calcined clay, rice husk ash, superabsorbent polymers, supplementary cementitious materials, Sustainable Development Goals 9,12 and 13