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Abstract
Background

Recent treatment failures observed for Artemisinin-based combination therapy (ACT) have raised concerns about the e�cacy of the front-line drug to treat
malaria and the need to develop a new antimalarial drug regimen. Plasmodium falciparum Apicomplexan Apetala 2 Invasion (PfAP2-I) transcription factor
(TF) is a protein that regulates the expression of a subset of gene families involved in Plasmodium falciparum red blood cell (RBC) invasion. PfAP2-I
associates with several chromatin proteins, including the Plasmodium falciparum bromodomain protein 1 (PfBDP1) and that complex formation is associated
with transcriptional regulation. Inhibiting PfAP2-I TF and PfBDP1 with small molecules represents a potential new antimalarial therapeutic target to combat
drug resistance, which this study aims to achieve.

Methods

The 3D model structure of PfAP2-I was predicted ab initio using ITASSER and ROBETTA prediction tools and was validated using Errat and Procheck from the
Save server 6.0. The crystal structure of PfBDP1 was also retrieved from Protein Data Bank (PDB) (www.rcsb.org/structure/7M97) and Computed Atlas of
Surface Topography of proteins (CASTp) 3.0 and ConCavity were used to predict the active sites of the PfAP2-I and PfBDP1 3D7 structures. Pharmacophore
modeling of the control ligand (3W7 from COACH server) and modeled 3D structure of PfAP2-I was carried out using the Pharmit server to obtain several
compounds for docking analysis. Chimera software was used to remove the complexed ligands, and the modeled protein structure was de�ned as a receptor.
Virtual screening and post-screening studies were conducted using AutoDock vina and LigPlot, respectively. The designed ligands’ toxicity predictions and in
silico drug-likeness were performed using the Swiss ADME predictor and OSIRIS Property Explorer.

Results

The result of the modeled protein from the ROBETTA prediction tool was prioritized based on structure validation results of 96.827 for ERRAT and 90.2% of the
amino acid residues in the most favored region for the Ramachandran plot. A total of 8656 compounds obtained from nine (9) databases on the Pharmit
server were used to prepare the ligand library and screened against the prepared 3D model structure of PfAP2-I, considering the active sites predicted from
CASTp and ConCavity. Six (6) best hits were selected based on the binding a�nity of the ligands to the active site PfAP2-I and were considered for post-
screening analyses. The six best hits exhibited dock scores between -9.9 and -10.2 kcal/mol for PfAP2-I and between -8.5 and -9.4 kcal/mol for PfBDP1. The
best hits also had lower binding energies in the PfAP2-I docking model when compared to the reference compound, CHEMBL3359262 (-8.4 kcal/mol) and the
standard drug, chloroquine (-4.2 kcal/mol). In the PfBDP1 docking model, the reference compound, CHEMBL3359262 and the standard drug, chloroquine has
binding a�nities of -8.3 and -6.1 kcal/mol respectively. The compounds with the best dock scores are ZINC97139187 (-10.2 kcal/mol) for PfAP2-I and MCULE-
6567089130 (-9.4 kcal/mol) for PfBDP1. For the ADMET properties, compound ZINC97139187 had the highest drug score of 0.63, followed by compound
154861216, MCULE-6567089130 and 57405339 with drug scores of 0.58, 0.47 and 0.47 respectively (all higher than that of the standard drug - chloroquine of
0.25).

Conclusions

The good, estimated binding energies and drug scores observed for compound ZINC97139187 and compound MCULE-6567089130 suggest that they can be
considered possible PfAP2-I and PfBDP1 inhibitors. Further pre-clinical experimental validations should be carried out to ascertain the e�cacy of these
predicted best hits.

Background
Many antimalarial drugs have been produced over the years, but resistant parasite strains have formed against most of them, including chloroquine,
pyrimethamine, and proguanil [1]. Recent treatment failures with artemisinin-based combination therapy (ACT) have raised concerns about the loss of the
highly-effective treatment currently available to treat malaria [2]. The licensed antimalarial drug’s poor e�cacy, combined with the spread of antimalarial drug
resistance, necessitates the development of an innovative strategy to identify novel antimalarial compounds [3]. Despite tremendous advances in
understanding malaria epidemiology and the availability of several therapeutic options, malaria remains one of the leading global causes of death, with
children accounting for a large proportion of those affected [4]

In silico techniques have been successful and have become powerful tools in the search to cure disease [5] and reducing the use of animal models in
pharmacological research, assisting in the rational design of novel and safe drug candidates, and repositioning marketed drugs [6]. They are vital in
identifying viable therapeutic candidates at a low cost and time by utilizing sophisticated computers and information technology to speed up drug discovery,
lead optimization, drug development, and design [7]. In silico methods such as molecular dynamics simulations, molecular docking, drugs-likeness prediction,
ADMET (absorption, distribution, metabolism, elimination, and toxicity) studies are used to screen candidate drugs/molecules from various
databases/libraries [7]. These methods have been proposed to recognize and select therapeutic relevant targets, study the molecular basis of drug-receptor
complexes interactions, structurally characterize ligand binding sites on biological targets, design de novo target-speci�c compound libraries, predict target
protein structure, identify hit compound by ligand- and structure-based virtual screening, estimate binding free energy between a ligand and receptor, and
optimize high-a�nity ligands [8].

The idea of targeting transcription and transcription factors (TFs) for drug therapy was long considered a ‘‘Sisyphean task” but recent work in drug discovery
has shown the direct modulation of transcription factor function by small molecules [9–11]. Transcription factors (TFs) are proteins that bind to DNA
sequences and control the stream of genetic information from DNA to mRNA [12]. TFs, along with other proteins in a complex, control Plasmodium falciparum
gene expression by promoting (activator) or blocking (repressor) the recruitment of RNA polymerase to speci�c genes during the intra-erythrocytic
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development cycle (IDC) in the red blood cells (RBC) [13, 14]. In antimalarial drug design, TFs as drug targets have enormous potential to be drug resistance-
free because targeting TFs affects many genes instead of one gene for enzymatic sites-based drugs [11]. One of such important TFs found across the
different Plasmodium spp is the Apetala 2 – Invasion (AP2-I) TF (a member of the Apicomplexan Apetala 2 (ApiAP2) TF). Plasmodium falciparum Apetala 2 –
Invasion (PfAP2-I) TF is a 183 KDa protein located on chromosome 10 of the Plasmodium genome whose primary function is to regulate red blood cell (RBC)
invasion genes [15]. PfAP2-I also targets promoters of nucleosome- and chromatin-related genes, cell-cycle-related genes, and genes associated with vesicle
transport and host-cell remodeling [14, 16]. It contains three AP2 domains, and only the third AP2 domain is essential for regulating a subset of genes involved
in red blood cell (RBC) invasion [15, 16]. PfAP2-I associates with several chromatin associated proteins, including the Plasmodium bromodomain protein 1
(PfBDP1) and that complex formation is associated with transcriptional regulation. PfAP2-I represents a potential new antimalarial therapeutic target as a
critical regulator of red blood cell invasion genes [17]. It is important to study and understand its functioning and determine drugs that can inhibit its activity.
This is very important for disrupting the parasite cycle in the human host, and to design effective therapies that can augment e�cacies of existing
antimalarials. This study aims to identify small molecules and validate the inhibitory potential of these small molecules against AP2-I regulatory action in
Plasmodium falciparum.

Methods
PfAP2-I structure prediction

The experimental 3D structure of PfAP2-I was modeled because it is not available in the Protein Data Bank (PDB) [18] as well as UniProt Knowledge base
(UniProtKB) [19]. The protein ID of the target (Plasmodium falciparum Apetala 2-Invasion 3D7 strain) was retrieved from National Centre for Biotechnology
Information (NCBI) with the accession number PF3D7_1007700. 

Afterward, the protein ID was submitted to the SWISS-MODEL web server [20] to develop a homology model with su�cient query sequence coverage and
sequence identity. The con�dent match to a protein of known structure was below 40%, so comparative modeling of PfAP2-I could not be done. The 3D
structure of PfAP2-I was then modeled on both the I-TASSER server (http://zhanglab.dcmb.med.umich.edu/I-TASSER) [21] and ROBETTA Baker server
(http://robetta.bakerlab.org) [22] using RoseTTAFold. 

RoseTTAFold is the default option that uses a deep learning-based modeling method. This method outperforms every other way for protein structure modeling
on the ROBETTA Baker server. The most reliable 3D structure was selected based on the con�dence value. The con�dence values are usually between 0.00
(bad) and 1.00 (good), and the higher the number, the higher the reliability of the predicted structure.

Structure validation of modeled protein 

PROCHECK [23] and ERRAT [24] on UCLA-DOE LAB – SAVES v6.0 were used to check for the quality of the modeled 3D structure of PfAP2-I generated on the
ROBETTA Baker Lab. The .pdb �le format of the modeled PfAP2-I was uploaded on the UCLA-DOE LAB – SAVES v6.0 site for this structure validation. The
.pdb �le format of the modeled PfAP2-I was uploaded on the server to obtain the overall quality factor from ERRAT and Ramachandran plot and the
Ramachandran plot statistics from PROCHECK. The overall quality factor is expressed as the percentage of protein for which the calculated error value falls
below the 95% rejection limit. Good high-resolution structures usually produce values around 95% or higher. 

The Ramachandran plot is used in accessing the quality of a modeled protein or an experimental structure, while the Ramachandran plot statistics provide
information on the total number of amino acid residues found in the favorable, allowed, and disallowed regions [23].

Active site prediction of AP2-I modeled structure and PfBDP1

The crystal structure of PfBDP1 was retrieved from Protein Data Bank (PDB) (www.rcsb.org/structure/7M97) [18]. The active sites of modeled PfAP2-I 3D7
and PfBDP1 structure were predicted using Computed Atlas of Surface Topography of proteins (CASTp) 3.0. [25]  and ConCavity [26]. The Computed Atlas of
Protein Surface Topography (CASTp) is an online service for identifying, de�ning, and quantifying certain geometric and topological features of protein
structures such as surface pockets, interior cavities, and cross channels (Dundas et al., 2006), while ConCavity is an online service used for predicting Protein-
Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure and works based on con�dentiality score (C-score). C-score is a
con�dence score of the predicted binding site. C-score values range between 0-1, where a higher score indicates a more reliable prediction. The modeled
PfAP2-I and PfBDP1 3D7 structure were submitted on the server. The necessary amino acids for binding interactions predicted by the two servers were
compared to determine the similarity between the two predicted active sites.

Pharmacophore modeling 

A pharmacophore model using the prepared modeled 3D structure of PfAP2-I TF was designed using pharmit server [28]. Pharmit server is a collection of built-
in databases such as Molprot, ChEMBL, ZINC, and PubChem. It contains millions of chemical compounds that can be used to screen drug-like compounds
against a given protein [29]. The Pharmit server is based on a pharmacophore model using the AutoDock Vina scoring function [30]. A control ligand (3W7
from COACH server) was selected for the screening [31], and both the modeled protein and control ligand were loaded into the Pharmit Server. The
pharmacophore model was built using six features, i.e., one hydrogen donor, two hydrogen acceptors, one aromatic, and two hydrophobic. The pharmit �lters
hit screening for the pharmacophore modeling were set using the Lipinski rule of 5 to minimize the results signi�cantly and obtain the best possible inhibitors
out of millions of drug-like compounds.

Pharmit �lter hit screening based on Lipinski rule of 5

http://zhanglab.dcmb.med.umich.edu/I-TASSER
http://robetta.bakerlab.org/
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0 ≤ Molecular weight ≤ 500

0 ≤ Rotatable bonds ≤ 10

0 ≤ LogP ≤ 5

0 ≤ Polar Surface Area ≤ 140

0 ≤ Molecular weight ≤ 500

0 ≤ Hydrogen Bond Acceptor ≤ 10

0 ≤ Hydrogen Bond Donor ≤ 5 

Protein and Ligand Preparation

The modeled protein structure was de�ned as a receptor while the complexed ligands were removed using Chimera software [32]. Furthermore, the protein was
prepared by computing Gasteiger charges, adding polar hydrogens, and merging the nonpolar hydrogens using AutoDockTools4.2.6. [33]. In addition,
OpenBabel software [34] was used to convert the .pdb �les to the AutoDock docking format (. pdbqt), which was further used for the docking simulation.

Virtual screening analysis

The virtual screening of compounds was carried out using AutoDock Vina, an accessible graphical user interface (GUI) for the AutoDock 4.2 program [35]. The
grid box was constructed using 80, 80, and 91 pointing in x, y, and z directions, respectively, with a grid point spacing of 0.375 Å. The center grid box is of
108.636 Å, 73.665 Å, and 158.751 Å around THR508A, TRP510A, LYS512A, THR514A, THR515A, GLU516A, GLU520A, TYR521A, LEU522A, GLN535A,
VAL554A, LYS555A, TYR557A, GLY558A, GLN561A, ALA562A, HIS585A, VAL586A, HIS587A, GLY588A, ARG590A, LYS591A, VAL593A, ASP594A, THR598A.
These amino acids were selected based on the CASTp and Concavity result. The top ten (10) hits against PfAP2-I were then generated and were ranked
according to their binding a�nities to verify the ligand-binding sites. The top six (6) best-docked compounds from PfAP2-I docking analysis were also docked
against PfBDP1 active site. Post-screening analyses were conducted using AutoDockTools, and LigPlot [36].

In silico drug-likeness and toxicity predictions 

The in silico drug-likeness and toxicity predictions of the designed ligands were carried out using the Swiss ADME predictor [37] and OSIRIS Property Explorer
[38]. SwissADME predictor provides information on the Oral bioavailability, Physicochemical properties, Lipophilicity, Water solubility, Pharmacokinetics,
Druglikeness, and Medicinal chemistry of the compounds [39]. OSIRIS Property Explorer program, on the other hand, provides information on a compound's
toxicity and determines parameters such as Molecular weight, Consensus lipophilicity (cLogP), Total polar surface area (TPSA), Solubility, Drug-likeness, and
Drug score, as well as the mutagenic, tumorigenic, irritant and reproductive risks [40].

Drug-likeness is a criterion for determining if a pharmacological substance possesses the characteristics of an orally active drug [41]. The Lipinski rule of �ve
is an established concept upon which drug-likeness is based. The law states that for a compound to exhibit drug-likeness and to avoid poor absorption or
permeation, the combination must not possess more than 5H-bond donors, more than 10H-bond acceptors, molecular weight must not be greater than 500,
and the calculated LogP (cLogP) must not be greater than 5  [41].

Another parameter used to select compounds as drug candidates are drug score. A high drug score value signi�es a high probability of the compound being
considered a drug candidate [43].

Results
PfAP2-I structure prediction

PfAP2-I structure prediction result from the I-TASSER server shows four predicted models. The models were predicted based on C-score, Exp. TM-Score,
Exp.RMSD, No.of decoys and Cluster density, and the result for each model is shown in Table 1. PfAP2-I structure prediction result from the ROBETTA Baker
server showed �ve predicted models using RoseTTAFold and model one (1) was prioritized based on its highest C-score. RoseTTAFold is the default option
and the most accurate method on the ROBETTA Baker server that uses a deep learning-based modeling method. For the RoseTTAFold, the con�dence
corresponds to the predicted local distance difference test (LDDT) using DeepAccNet.

Structure validation of modeled protein 

The PfAP2-I 3D modeled structure results from both the I-TASSER server and ROBETTA Baker server were validated using ERRAT and PROCHECK on UCLA-
DOE LAB – SAVES v6.0. Model 1 of the PfAP2-I 3D structure from the ROBETTA Baker server showed the best result after validation. Errat value for model 1 of
the PfAP2-I 3D structure from the ROBETTA Baker server was 96.827, and good resolution values usually produce around 95% or higher (Fig. 3). The
Ramachandran plot statistics implied that the model 1 3D structure of PfAP2-I from ROBETTA Baker server has 90.2% of its residues in the most favored
regions, 8.5% of its residues in additional allowed regions, 0.4% of its residues in the generously allowed regions, and 0.9% of its residues in disallowed
regions of the Ramachandran plot. A good quality model is expected to have 90% of its residues in the most favored region. This also validates that the 3D
modeled structure is a good quality model (Fig. 3)
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Active site prediction of AP2-I modeled structure

Using CASTp 3.0 active site prediction tool, a total of 102 pockets were generated, and pocket ID 2 was selected as the preferred active site with an area (SA)
of 707.191 and a volume (SA) of 1193.757 (Fig. 4a). For ConCavity, rank one was selected with the highest C-score of 0.66. Pocket 2 from CASTp 3.0 and rank
one of ConCavity were chosen as the more favorable sites for the docking analyses due to the similarities observed from the comparison of results. Pocket 2
from CASTp 3.0 has 25 amino acid residues in the active sites for the modeled protein - THR508A, TRP510A, LYS512A, THR514A, THR515A, GLU516A,
GLU520A, TYR521A, LEU522A, GLN535A, VAL554A, LYS555A, TYR557A, GLY558A, GLN561A, ALA562A, HIS585A, VAL586A, HIS587A, GLY588A, ARG590A,
LYS591A, VAL593A, ASP594A, THR598A.

Active site prediction of PfBDP1 3D structure

Using CASTp 3.0 active site prediction tool, a total of 11 pockets were generated, and pocket ID 1 was selected as the preferred active site with an area (SA) of
147.912 and a volume (SA) of 74.504 (Fig. 4b). The amino acid residues present in chain A of pocket 1 are: ILE355A, PHE356A, LYS358A, LEU359A, VAL360A,
GLN365A, CYS367A, TYR370A, PRO377A, MET378A, 379SERA, ILE405A, ASN408A, CYS409A, TYR412A, ASN413A, and VAL419A.

Pharmacophore Based Virtual Screening result

Hit screening of drug-like like compounds from nine (9) databases (Chemble, ChemDiv, ChemSpace, MCULE, MCULE-ULTIMATE, MolPort, NCI open repository,
Lab Network, Zinc) on the Pharmit Server Engine gave a total of eight thousand, one hundred and �fteen (8,656) drug-like compounds (Table 2). These eight
thousand, six hundred and �fty-six (8,656) drug-like compounds were used for the docking analysis as well as the reference compound CHEMBL3359262) and
the standard drug (chloroquine) against PfAP2-I, and the top ten (10) hits were identi�ed based on the highest-ranked auto-dock score from the docking
analysis (Table 3). The result of the top six (6) best-docked compounds docked against PfBDP1’s active site is shown in Table 4.

Post-docking analysis

Six (6) out of the ten (10) compounds were selected for post-docking (LigPlot webserver) analysis because three compounds were repetitions (compounds in
*), and no information was found for one (the compound in #) from PubChem. The 2D and 3D model interaction between best hit compound (ZINC97139187)
and PfAP2-I is shown in Fig. 6 while that of PfBDP1 is shown in Fig.7. The hydrogen bonds interactions as well as the bond lengths of two best hit
compounds from the docking analysis against PfAP2-I and PfBDP1 are shown in Table 5.

In silico results of risks and drug-likeness of six compounds

ADMET screening and toxicity testing results of the six (6) drug-like compounds are shown in Table 6 and 7 while the oral bioavailability radar results for the
six (6) drug-like compounds including that of the reference compound (CHEMBL3359262) and standard drug (chloroquine) is shown in Fig. 8. 

Discussion
Previous genome-wide analysis by ChIP-seq show that PfAP2-I interacts with a speci�c DNA motif in the promoters of target genes [17]. Although PfAP2-I
contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development [17]. PfAP2-I also associates
with several chromatin associated proteins, including the Plasmodium falciparum bromodomain protein (PfBDP1) and that complex formation is associated
with transcriptional regulation [17, 44]. A study on PfBDP1 regulation of invasion gene expression shows that PfBDP1 binds to chromatin at transcriptional
start sites of invasion-related genes and directly controls their expression [44]. Conditional PfBDP1 knock-down causes a dramatic defect in parasite invasion
and growth and results in transcriptional down-regulation of multiple invasion-related genes at a time point critical for invasion. Also, PfBDP1 overexpression
enhances expression of these same invasion related genes. PfBDP1 may also be independently recruited to chromatin through other DNA-binding proteins.
These �ndings collectively show that PfBDP1 critically coordinates expression of invasion genes and indicates that targeting PfBDP1 could be an invaluable
tool in malaria eradication [44].

In this current study, molecular docking analysis of 8,656 compounds was carried out to determine the inhibitory potential of small molecules against PfAP2-I
TF and a bromodomain protein PfBDP1. These compounds were used to prepare the ligand library and screened against the prepared 3D model structure of
PfAP2-I and PfBDP1. The top ten (10) drug-like compounds were identi�ed based on the docking analysis's highest-ranked auto-dock score. Six (6) out of the
ten (10) compounds were selected for post docking analysis because three compounds were repetitions (compounds in *), and no information was found for
one (the compound in #) from PubChem. The six compounds exhibited dock scores between -9.9 and -10.2 kcal/mol, and had lower binding energies when
compared to the reference compound (CHEMBL3359262) and the standard drug (chloroquine) with binding energies of -8.4 and -4.2 kcal/mol respectively for
PfAP2-I. PfBDP1, as a co-regulator of PfAP2-I was also subjected to docking analysis in this study to determine the inhibitory potential of the six best hits from
PfAP2-I docking. The six selected compounds exhibited dock scores between -8.5 and -9.4 kcal/mol, and had lower binding energies when compared to the
reference compound (CHEMBL3359262) and the standard drug (chloroquine) with binding energies of -8.3 and -6.1 kcal/mol respectively when docked
against PfBDP1.

ADMET screening of the six (6) drug-like compounds were based on parameters such as the bioavailability radar, lipophilicity, water-solubility,
pharmacokinetics, drug-likeness, and medicinal chemistry. The oral bioavailability radar summarily describes the degree of drug-likeness of a molecule �rst
using six properties (lipophilicity, size, polarity, insolubility, saturation, and �exibility) (Fig. 8). For each of the properties, the pink area represents the
physicochemical space with an optimal range of lipophilicity (XLOGP3) between -0.7 and +5.0, size (molecular weight) between 150 and 500g/mol, polarity
(total polar surface area) between 20 and 130 Å2, solubility (log S) not more than 6, saturation not less than 0.25 and �exibility, not more than nine rotatable
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bonds. ZINC97139187, 57410073, 154861216, and 57405339 fell within the physicochemical space for all six properties and can be said to be orally
bioavailable, CHEMBL3923620, and MCULE-6567089130 had a deviation in the degree of saturation outside the physicochemical space.

Table 7 and 8 showed that all the compounds were within the minimum and maximum acceptable range. The six (6) compounds had molecular weights less
than 500. This implies that when these compounds are administered as drugs, they are likely to be absorbed and reach the site of action [45]. The numbers of
rotatable bond (NRB), hydrogen bond acceptors (NHA), and hydrogen bond donors (NHD) in the six compounds (Table 7) are in accordance with Lipinski's rule
of �ve [42]. 

Lipophilicity is an essential property in drug discovery. Multiple predictors (iLOGP, XLOGP3, WLOGP, MLOGP and SILICOS-IT) were used to generate a
consensus estimation of lipophilicity to increase the prediction accuracy. Consensus LogP values of less than �ve were found in all substances, including the
standard medication (chloroquine), indicating good absorption and penetration across cell membranes [45].

Solubility of a molecule greatly facilitates major drug development activities, especially the ease of handling and drug formulation. It is a signi�cant property
in�uencing absorption and delivery of a su�cient quantity of active ingredients in the small volume of pharmaceutical dosage [46]. Five compounds
(ZINC97139187, 57410073, 154861216, MCULE-6567089130, and 57405339) were moderately soluble in water with LogS (ESOL) values ranging from -5.42
to -4.60, while one (CHEMBL3923620) of the compounds was soluble in water with a -3.41 LogS (ESOL) value. 

Pharmacokinetic properties such as gastrointestinal (GI) absorption, Blood-Brain Barrier (BBB), and CYP 450 enzymes can be used to evaluate individual
ADME behavior of small molecules. It has been suggested that CYP can process small molecules synergistically to improve the protection of tissues and
organisms [47]. It is estimated that 50 to 90% of therapeutic molecules are substrates of �ve major isoforms (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and
CYP3A4) [48]. All six compounds have a high gastrointestinal (GI) absorption and cannot cross the Blood-Brain Barrier (BBB), except 154861216. Four of the
compounds are suitable inhibitors of CYP450 enzymes, while two are not (Table 5).

The selected compounds' physicochemical properties and toxicity risks were carried out using Osiris property explorer. Molecular weight, solubility prediction,
total polar surface area (TPSA) (Å2), drug-likeness, drug score, mutagenic tumorigenic, irritant, and reproductive properties were examined
predicted. Compounds with high molecular weights above 500 g/mol are less likely to be absorbed and, therefore, less likely to reach the destination of action.
The molecular weights of the six compounds were found to be less than 500. Drug-likeness may be de�ned as a complex balance of molecular properties and
structural features that determine whether a particular molecule is similar to the known drugs. A positive value for drug-likeness means that the molecule
contains predominantly fragments frequently present in commercial drugs [49]. Four (4) compounds, ZINC97139187, 57410073, 154861216, and MCULE-
6567089130, had positive value for the drug-likeness property.

The drug score (ds) is a contribution calculated directly from of parameters of the Partition coe�cient (cLogP), solubility(clogS), molecular weight (Mol. Wt),
drug-likeness, and toxicity risk within one good practical value [50]. The higher the drug score, the better the chance to be a drug candidate. The drug score
values such as 1.0, 0.8, and 0.6 are associated with no risk, medium risk, and high risk, respectively. Among the six compounds, ZINC97139187 had the
highest drug score value of 0.63 (more elevated than that of chloroquine of 0.25), fell within the medium-risk range, and may be used as a drug molecule. In
general, the drug score values of the �ve compounds (ZINC97139187, 57410073, 154861216, MCULE-6567089130, and 57405339) with range 0.26-0.63 were
more signi�cant than that of Chloroquine. Only one compound (CHEMBL3923620) was below that of Chloroquine with a value of 0.14. This compound
(CHEMBL3923620) also possessed medium risk mutagenic, low risk tumorigenic, high-risk irritant and low reproductive toxicity risks. Another compound
(57410073) also showed low risk mutagenic, high risk tumorigenic, low-risk irritant, and low reproductive toxicity risks. All other compounds (ZINC97139187,
154861216, MCULE-6567089130, and 57405339) had low risk mutagenic, low risk tumorigenic, low-risk irritant, and low-risk reproductive toxicity risks.

Conclusion
The good, estimated binding energies and drug score values observed for compound ZINC97139187 against PfAP2-I and compound MCULE-6567089130
against PfBDP1 suggest that they can be considered possible PfAP2-I and PfBDP1 inhibitors. Further pre-clinical experimental validations should be carried
out to ascertain the e�cacy of these predicted best hits.
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Table 1. I-TASSER PfAP2-I structure prediction result

Name C-score Exp.TM-Score Exp.RMSD    No.of decoys Cluster density

Model1 0.03      0.72+-0.11    9.7+-4.6        600 0.5924

Model2 -2.64                                     251           0.0410

Model3 -3.40                                                 84 0.0191

Model4 -3.93                                                 60 0.0113

Model5 -3.87                                                60 0.0120

Table 2: Pharmacophore based virtual screening of compounds from nine (9) databases on the Pharmit server

  Pharmit database Conformers Molecules Hits

a. CHEMBL25 23,136,925 1,752,844 182

b. ChemDiv 21,562,497 1,456,120 77

c. ChemSpace 250,205,463 50,181,678 1,719

d. MCULE 223,460,579 45,257,086 1,716

e. MCULE-ULTIMATE 378,880,344 126,471,502 2,018

f. MolPort 114,798,054 8,015,098 1,534

g. NCI Open Chemical Repository 574,117 52,237 -

h. LabNetwork 22,051,020 1,794,286 138

i. Zinc 123,399,574 13,190,317 1,272

Total 8,656

Table 3: The top 10 best-docked compounds from the Pharmit server ranked based on the Auto-dock score against PfAP2-I active site

Docked ligand Pharmit IDs  Pubchem IDs Molecular formula Binding a�nity Kcal/mol

a. ZINC97139187* 87052587* C28H24N6O3* -10.2

b. CHEMBL3923620  123492565 C19H14FN9O2 -10.1

c. 57410073  57410073 C29H29N5O2 -10.0

d. ChemDiv-S022-1700* 87052587* C28H24N6O3* -10.0

e. 154861216  154861216 C26H30N4O2 -10.0

f. MCULE-7146940834* 87052587* C28H24N6O3* -10.0

g. MCULE-6816682540# - - -10.0

h. MolPort-035-696-264* 87052587* C28H24N6O3* -9.9

i. MCULE-6567089130 135500213 C20H13N7O -9.9

j. 57405339 57405339 C28H31N7O -9.9

k. Reference compound (CHEMBL3359262) 52934178 C22H25N5O2 -8.4

l. Chloroquine 2719 C18H26ClN3 -4.2

*- repeated compounds

# - was not found on pubchem

Table 4: The top six (6) best-docked compounds from the Pharmit server docked against PfBDP1 active site
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Docked ligand Pharmit IDs  Pubchem IDs Molecular formula Binding a�nity Kcal/mol

a. MCULE-6567089130 135500213 C20H13N7O -9.4

b. 57405339 57405339 C28H31N7O -9.3

c. 57410073  57410073 C29H29N5O2 -9.1

d. ZINC97139187 87052587 C28H24N6O3 -9.0

e. CHEMBL3923620  123492565 C19H14FN9O2 -8.8

f. 154861216  154861216 C26H30N4O2 -8.5

g. Reference compound (CHEMBL3359262) 52934178 C22H25N5O2 -8.3

h. Chloroquine 2719 C18H26ClN3 -6.1

Table 5. Hydrogen bonds interaction between the best hit compounds against PfAP2-I and PfBDP1 based on binding a�nity using LigPlot 

  Pharmit IDs  Pubchem IDs Protein Hydrogen bonds and the bond lenghts

a. ZINC97139187 87052587 PfAP2-I Lys591A (3.17 Å)

b. MCULE-6567089130 `87052587 PfBDP1 Asn413A (2.81 Å), Ile355A (2.79 Å)

Table 6. SwissADME prediction of ADME properties of six compounds in comparison with chloroquine

Compounds Physicochemical
properties

Lipophilicity Water
solubility

Pharmacokinetics

    NRB NHA  NHD cLogP LOG (ESOL) GI Ab-
sorption 

BBB
Permeant

CYP1A2
Inhibitor

CYP2C19
Inhibitor

CYP2C9
Inhibitor
 

CYP2D6
Inhibitor
 

a. ZINC97139187 4 5 2 1.44 -4.95 High No Yes Yes Yes Yes

b. CHEMBL3923620  4 9 2 0.77 -3.41 High No No No No No

c. 57410073  6 4 2 3.84 -5.42 High No No Yes Yes Yes

d. 154861216  5 3 1 4.14 -4.78 High Yes No Yes Yes Yes

e. MCULE-
6567089130

1 4 3 2.11 -4.60 High No Yes No No No

f. 57405339 6 5 1 2.76 -5.30 High No No Yes Yes Yes

g. Reference
compound
(CHEMBL3359262)

3 4 1 2.57 -3.94 High No No No Yes Yes

h. Chloroquine 1 2 8 4.01 -4.55 High Yes Yes No No Yes

Table 7. OSIRIS Property Explorer prediction of physicochemical properties and toxicity risks of six compounds in comparison with chloroquine
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  Compounds  Physicochemical properties  Toxicity risks 

    Molecular
weight
(g/mol)

Solubility
prediction 

TPSA
(Å2)

Drug
likeness 

Drug
score 

Mutagenic  Tumorigenic  Irritant  Reproductive

a. ZINC97139187 492.5 -4.3 108.38 6.76 0.63 Low Risk Low Risk Low
Risk

Low Risk

b. CHEMBL3923620  419.4 -6.48 139.76 -1.67 0.14 Medium
risk

Low Risk High
Risk

Low Risk

c. 57410073  479.6 -6.08 90.98 3.86 0.26 Low Risk High Risk Low
Risk

Low Risk

d. 154861216  430.5 -4.16 69.30 2.04 0.58 Low Risk Low Risk Low
Risk

Low Risk

e. MCULE-6567089130 367.4 -7.86 117.75 4.37 0.47 Low Risk Low Risk Low
Risk

Low Risk

f. 57405339 481.6 -3.71 82.94 -0.27 0.47 Low Risk Low Risk Low
Risk

Low Risk

g. Reference compound
(CHEMBL3359262)

391.0 -2.97 83.88 8.43 0.82 Low Risk Low Risk Low
Risk

Low Risk

h. Chloroquine 319.9 -4.06 28.16 7.39 0.25 High Risk Low Risk High
Risk

Low Risk

Figures

Figure 1

3D modeled structure of PfAP2-I TF from ROBETTA Baker server
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Figure 2

ERRAT structure validation value of PfAP2-I modeled structure
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Figure 3

Ramachandran plot statistic validation of PfAP2-I modeled structure

Figure 4
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The binding pocket of 3D structure PfAP2-I (a) and PfBDP1 (b) as computed using CASTp 3.0

Figure 5

2D Structure and 3D Conformer of the six best hits
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Figure 6

2D (a) and 3D (b) model interaction between best hit compound (ZINC97139187) and PfAP2-I.

Figure 7

2D (a) and 3D (b) model interaction between best hit compound (MCULE-6567089130) and PfBDP1.
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Figure 8

Oral bioavailability radar of the six compounds using SwissADME prediction


