University Links: Home Page | Site Map
Covenant University Repository

Comparative analysis of features extraction techniques for black face age estimation

Oladipo, Oluwasegun and Omidiora, Elijah Olusayo and Osamor, V. C. (2022) Comparative analysis of features extraction techniques for black face age estimation. AI & SOCIETY.

[img] PDF
Download (142kB)


A computer-based age estimation is a technique that predicts an individual's age based on visual traits derived by analyzing a 2D picture of the individual's face. Age estimation is critical for access control, e-government, and effective human–computer interaction. The other-race effect has the potential to cause techniques designed for white faces to underperform when used in a region with black faces. The outcome is the consequence of intermittent training with faces of the same race and the encoding structure of the trained face images, which is based on the feature extraction technique used. This study contributes to a constructive comparison of three feature-extraction techniques, namely, local binary pattern (LBP), Gabor Wavelet (GW), and wavelet transformation, used in the development of a genetic algorithm (GA)- artificial neural network (ANN)-based age estimation system. The feature extraction techniques used are proven to produce a wealth of shape and textural information. The GA-ANN constitutes the age classifier module. The correct classification rate was chosen as the performance metrics in this study. The results demonstrated that the LBP is a more robust representation of the black face than the GW and Wavelet transformations, as evidenced by its accuracy rate of 91.76 compared to 89.41 and 84.71 achieved with the GW and Wavelet transformation age estimation systems, respectively.

Item Type: Article
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science
Depositing User: Mrs Patricia Nwokealisi
Date Deposited: 31 Mar 2022 14:36
Last Modified: 31 Mar 2022 14:36

Actions (login required)

View Item View Item