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Abstract. Recently, direct bandgap double perovskites are becoming more popular 

among researchers in the photovoltaic community owing to their potential to address 

issues of lead (Pb) toxicity and structural instability inherent in lead halide (simple) 

perovskites. In this study, In-Ag based direct bandgap double perovskite, Cs2AgInCl6 

(CAIC), is treated with transition metal doping to improve its material properties. 

Investigations of structural and electronic properties of Cu-doped CAIC, 

Cs2Ag1−xCuxInCl6, are done using ab-initio calculations with density functional theory 

(DFT) and virtual crystal approximation (VCA). With the introduction of Cu-dopant, 

obtained results show improvement in the structural and electronic behaviour of CAIC. 

Based on obtained results, transition metal (Cu) doping is a viable means of treating 

double perovskites - by tuning their material properties suitable for an extensive range of 
photovoltaics, solar cells and optoelectronics. 

Keywords: Virtual crystal approximation; DFT; solid solution; optimized lattice 

parameter; Cu-doping. 

 
1. Introduction 
Perovskite solar cells (PSCs) havegarnered much attentionas promising photovoltaic device 

capable of harnessing solar power effectively owing to high power conversion efficiency (PCE) 

of about 25.2%[1], materials availability, ease of fabrication process and low cost[2]–[8]. 

Methylammonium lead tri-iodide (CH3NH3PbI3 or MAPI), atypical lead halide perovskite 

(LHP), is gaining popularity as an ideal light harvester and a charge carrier mediator in solar 

cells[3], [9], [10], because of its appealing characteristics such as;optimal direct bandgap (~1.5 

eV), good photoconductivity, considerable lifetime diffusion length, high optical absorption 

coefficient, great bipolar transporting capability, defect tolerance ability, and low carrier 

effective masses with high mobility [11]–[20]. Despite these appealingqualities, MAPI still faces 

some fundamental issues ofinstability and toxicity associated with lead (Pb)[21]–[23], which 

have hindered their large scale commercialization as viable PSCs. 
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Substitution of toxic Pb with non-toxic elements is considered one of the viable means of 

resolving these issues and has subsequently led to the search for Pb-free perovskites and 

perovskite-derivatives materials. One way of achieving this is through direct substitution of Pb2+ 

with non-toxic group IV elements such as tin (Sn) andgermanium (Ge). Unfortunately, these 

produced undesirable characteristics such as poor stability and low performance of PSCs 

attributed to the oxidation of Ge2+ and Sn2+ to their 4+ states [24]–[26]. Another approach 

involves the complex substitution of Pb2+ wherein  Pb2+ cation is replaced with monovalent and 

trivalent cations resulting in a new structure known as double perovskite (DP) [27]. DP has the 

generalA2M
′M′′ X6 stoichiometry, where A represents cation like Cs+, M′denotesmonovalent 

cation (M′  = Ag+, Cu+)and M′′ trivalent cation (M′′  = In3+, Bi3+), while X halides [28]. 

In recent times, DPs are increasingly gaining popularity among researchers in the photovoltaic 

research community owing to their potential to address issues of structural instability and 

toxicity associated with toxic lead (Pb) [28], [29]. Direct bandgap DPs are in the forefront 

following the pioneering work by Volonakis and co-workers in 2017 where Cs2AgInCl6 (CAIC) 

DP was proposed, synthesized and identified as a potential, environmentally-benign replacement 

for lead-based halide perovskites for applications in photovoltaic, solar cells and 

optoelectronics[30].CAIC is a direct-bandgap DP with high thermal and mechanical stabilities, 

which crystallizes in the face-centred cubic structure with space group Fm3�m, and has an 

experimental lattice parameter of 10.469 – 10.481 Å and bandgap of 2.5 - 3.3 eV  [30]–[32]. 

However, pure bulk CAIC crystal or powder are characterized with low photoluminescence 

quantum yield (PLQY) and photo-absorption coefficient compared to CAIC nanocrystals and 
these are as a result of parity-induced forbidden transition [31], [33], [34]. 

Experimental findings have shown doping engineering as a fundamental means to enhance the 

electronic and optical properties of materials, thereby enabling their widespread usability beyond 

photovoltaic applications. Recent experimental studies of M-cation doping of CAIC with 

transition metals have been observed to improve the electronic, photoluminescence quantum 

yield (PLQY) and photo-absorption coefficients of CAIC [33], [35]. Specifically, Cu-doping has 

shown to be effectivein enhancing the photoluminescence and thermoelectric properties of 

materials[36], [37]. Several simulation studies of the dynamics of surfaces of materials at 

nanoscales had been performed using different simulation methods [38]–[42], which show 

potential fabrication methods for optoelectronic devices and panel surfaces.Theoretical studies 

based on DFT on M-cation doping in double perovskites are scarce.Given these, this work seeks 

to investigate the effect of Cu-doping on the structural and electronic behaviour of CAIC 

(Cs2Ag1−xCuxInCl6) using the virtual crystal approximation (VCA) approach within the 

framework of DFT. VCA is a first-principles technique in modelling disordered solid 

solutionsvia pseudopotential averaging [43]. Itis effective in treating disordered systems [43], 
[44].  

2. ComputationalMethods 

The electronic structures of Cs2Ag1−xCuxInCl6 (CAIC:Cu) solid solutionswere examined using 

ab-initio calculation with the virtual crystal approximation (VCA) approach[45].DFT 

calculations were performed using Quantum ESPRESSO (QE) software package[46], [47], with 
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the pseudopotential plane-wave method. The generalized gradient approximation ofPerdew-

Berke-Ernzerhof (GGA-PBE) exchange-correlation (XC) functional[48]was employed for 

geometry optimizations;van der Waals functional (vdW-DF-OB86)  [49]was chosen for lattice 

parameter calculation and hybrid PBE0 functional [50]applied for electronic structure 

calculation. The virtual atoms (Ag1−x − Cux) were modelled with the Optimized Norm-

Conserving Vanderbilt (ONCV) pseudopotentials [51] using the VCA approach, where the 

mixing ratio �wasvaried from 0 to 1 inthe step of 0.1.For the electron-ion interaction, ONCV 

pseudopotentials [51]were also employed for all calculations. In these calculations, the optimized 

kinetic cutoff energy of 100 Ry was set for plane-wave basis set expansion. The Monkhorst-Pack 

special [52] k-points sampling was set as 6 × 6 × 6for optimization and PBE0 band structure 

calculations while a denser k-points of  12 × 12 × 12wereemployed for the electronic (PBE) 

band structure calculations. The convergence threshold was set at 10−10 eV, while the force on 

each atomwas less than 20 meV/Å after the relaxation of entire atomic positions. 

 

3. Results and Discussion 

 

Figure 1: Polyhedral view of ��2��	
��6 double perovskite (space group �
3�
).  

The host perovskite, CAIC, crystallizes in face-centred-cubic (fcc) phase with a space group of 

Fm3�m and its crystalline structure are illustrated in Fig. 1. Within the framework of DFT, the 

van der Waals functional (vdW-DF-OB86) was used to accurately describe the lattice parameter 

and bulk modulus of the host perovskite by using the Birch-Murnaghan [53] fit of the total 

energy-unit cell volume data. The calculated lattice parameter for CAIC (10.514 Å) agrees well 

with the experimental value (10.469)[30]. The above procedure was repeated for 

Cs2Ag1−xCuxInCl6 while varying the Cu content � from 0 to 1in the step of 0.1. To ascertain the 

reliability of the VCA method, the lattice parameter and electronic bandgap of 

Cs2Ag0.5Cu0.5InCl6 are computed using a 2 × 2 × 2 supercell. The results obtained show good 

agreement; 10.441 Å (10.450 Å) and 0.41 eV (0.34 eV) for VCA method (supercell alloying 

method). 
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Figures 2 and 3 show the optimized lattice parameters and bulk moduli of CAIC:Cu solid 

solutions. As the composition of Cu increases, the lattice parameter decreases following a 

linearfunction,�(�) = 10.5128 − 0.1395�. This function satisfies the Vegard’s law for lattice 

parameters. Conversely, the calculated bulk modulus increases quadratically following a second-

order polynomial, �(�) = 34.0636 + 1.4576� − 0.7576�2 . With these results, it can be 

inferred that the incorporation of Cu into CAIC causes the crystal lattice to shrink, thus 

reinforcing the material stability.  

 
Figure 2:Calculated lattice parameters as a function of Cu composition� in CAIC:Cu solid 
solutions, with linear fitting. 

 
Figure 3:Bulk moduli as a function of Cu composition� in CAIC:Cu solid solutions 
withquadratic fittings. 

The electronic band structures of CAIC and CAIC:Cu solid solutions are calculated using DFT 

based on the first-principles calculations.At first,GGA-PBE was employedas the exchange-

correlation functional for the bandgap calculation, where a bandgap underestimation of 0.95 eV 
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was observedwhen compared withexperimental value of 3.3 eV [30]. Table 1 shows the 

comparative results of the calculated bandgap with other experimental and theoretical results. To 

circumvent this underestimation and improve the accuracy of the bandgap, the hybrid PBE0 was 

used as the exchange-correlation functional where a bandgap value of 3.23 eV was obtained. The 

obtained result agrees well with experimental value of 3.3 eV (See Table 1).  
 
Table 1:Calculated bandgap ��of CAIC double perovskites using different exchange-correlation 
functionals compared with other experimental and theoretical results. 

 
Material 

 This work  
Previous work 

 
Expt.  PBE PBE0 

CAIC (� = �) ��(��) 0.95 3.23 2.9-3.3[30],3.33[31] 3.3[30],  

 
The nature of bandgap, as well as the locations of conduction band maximum (CBM) and 

valence band minimum (VBM), can be revealed via the electronic band structure. Figure 

4depicts the electronic band structure of CAIC along some selected high symmetry points, which 

reflect that CAIC is a directbandgap DP with both CBM and VBM located at the gamma (Γ) 

point in the Brillouin zone.  

 
Figure 4:Electronic band structure of CAIC using PBE0 functional. 

From the aforementioned above, it is worth noting that the hybrid PBE0 functional can give the 

most reliable bandgap value for double perovskites. With this assertion, the hybrid PBE0 

functional was then used to compute the electronic band structure of CAIC:Cu solid solutions. 

Figure 5 shows the variation tendency in the bandgap as the Cu composition increases. By 

interpolating the bandgaps to a polynomial function, the bandgaps decreasequadratically with a 

second-order polynomial function, �(�) = 3.2698 − 0.6463� − 0.6936�2, with increasing Cu 

content (�). This function satisfied the Vegard’s law with abandgap bowing parameter,�, of -

0.6936.In addition to this, the direct bandgap nature of the host perovskite remains unchanged 

despite the introduction of Cu-dopants. Bandgap bowing parameter (�) indicates the non-

linearity of the bandgap to the composition, as well as the degree of fluctuation in the crystal 
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field. The results indicate enhancement in the light-harvesting ability of the materials owing to 

the reduction in the bandgap with increasing Cu content. Since the bandgap bowing parameter is 

very small, it indicates good miscibility between CAIC and CCIC (� = 1), and low 

compositional disorder. 

 

Figure 5: Calculated bandgap of CAIC:Cu solid solutions with the polynomial fit. The 
experiment value for CAIC is indicated with the red dot. 

 
4. Conclusion 

In this work, the effect of Cu-doping on the structural and electronic properties of CAIC has 

been studied using first-principles DFT calculations and VCA approach. The ab-initio VCA 

method was used to model the solid solutions. The PBE0 functional was used for the band 

structure calculations after assessing the exchange-correlation functional of GGA-PBE. With 

increasing Cu contents, the crystal lattice shrinks following a linear function �(�) = 10.5128 −

0.1395�, bulk modulus increases with a quadratic function of �(�) = 34.0636 + 1.4576� −

0.7576�2, while the bandgap decreases quadratically with a second-order polynomial function, 

�(�) = 3.2698 − 0.6463� − 0.6936�2. The variation tendencies, as a result of Cu-doping, in 

the structural and electronic properties of the materials under study have shown Cu to be an 

efficient dopant in treating double perovskites. In conclusion, Cs2Ag1−xCuxInCl6 (CAIC:Cu) 

solid solutions can be presented as potential candidates for photovoltaics and optoelectronics. 
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