A Predictive Model For Detecting Underage Voters using Deep Learning and Blockchain Technology

NWANKWO, CHUKWUMA MICHAEL (14CG01792)

OCTOBER, 2021

A Predictive Model For Detecting Underage Voters using Deep Learning and Blockchain Technology

By

NWANKWO, CHUKWUMA MICHAEL

(14CG01792)

B.Sc Computer Science, Covenant University, Ota

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN COMPUTER SCIENCE IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA.

OCTOBER, 2021

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Mr. John A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **NWANKWO, CHUKWUMA MICHAEL (14CG01792)** declares that this research was carried out by me under the supervision of Prof. Victor. C. Osamor of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

NWANKWO, CHUKWUMA MICHAEL

Signature and Date

CERTIFICATION

We certify that this dissertation titled "AGE PREDICTION SOLUTION FOR E-VOTING ADMINISTRATION AGAINST UNDERAGE VOTERS" is an original research work carried out by NWANKWO, CHUKWUMA MICHAEL (14CG01792) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Victor C. Osamor. We have examined and found this work acceptable as part of the requirements for the award of Master of Science, Computer Science.

Prof. Victor C. Osamor (Supervisor)

Dr. Olufunke O. Oladipupo (Head of Department) **Signature and Date**

Signature and Date

Prof. Folorunso Adepoju (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

To ever-merciful, ever-gracious, and faithful God, who has given the grace and privilege to be able to achieve this fit in my educational carrier.

ACKNOWLEDGEMENTS

I am grateful to the God of heaven and earth, for counting me worthy to attain this level in my life. I am grateful Lord as I acknowledge as the source of all wisdom and knowledge.

My sincere appreciation goes to the Chancellor and the Chairman of the Board of Regent, Covenant University, Dr. David Oyedepo for providing both the spiritual and academic platform for me to advance my life.

My unreserved and sincere gratitude goes to my Supervisor, Professor Victor C. Osamor, for the advice, patience, guidance, love and commitment showed me towards the completion of this work. I am truly grateful sir, and may God richly bless you. I also want to specially thank all members and faculty and staff of Department of Computer and Information Sciences, led by the Head of Department Dr. Olufunke O. Oladipupo.

I am indeed grateful to my Parents. Mr. Andrew Nwankwo and Mrs. Catherine Nwankwo, they the one major reason why I am what I am today. There are no words that will be enough to show my appreciation to you both. May God almighty continue to keep you both alive and good health so you can continue to reap the fruits of your labor. My sincere gratitude will also go to my sibling, my brothers Mr. Okwudili Nwankwo, Mr. Oluchukwu Nwankwo, Mr. Toochukwu Nwankwo, and my sisters Mrs. Obiageli Nzukwe and Mrs. Eberechukwu Iloh. May bless you all for your support.

Finally, I want to sincerely appreciate my wife Mrs. Nonye Chukwuma-Nwankwo and our daughter Miss Mmachukwu Chukwuma for the support, tolerance and understanding al through the period of this work. May God bless you both abundantly.

TABLE OF CONTENTS

CONT	ENT	Page
COVE	R PAGE	i
TITLF	E PAGE	ii
ACCE	PTANCE	iii
DECL	ARATION	iv
CERT	IFICATION	v
DEDI	CATION	vi
ACKN	IOWLEDGEMENTS	vii
TABL	E OF CONTENTS	viii
LIST (OF FIGURES	xii
LIST (OF TABLES	xiv
LIST (OF ABBREVIATIONS	XV
ABST	RACT	xviii
	CHAPTER ONE: INTROCUCTION	1
1.1	Background Information	1
1.2	Statement of the Problem	3
1.3	Research Questions	3
1.4	Aim and Objectives of the Study	3
1.5	Research Methodology	4
1.6	Significance of the Study	5
1.7	Scope and the Limitations of the Study	5
1.8	Brief Description of Research Workflow	6
	CHAPTER TWO: LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Voting	7
2.2	2.1 Elections	7
2.2	2.2 Online Voting System	8
2.2	2.3 Encrypted Voting Protocols	9
2.3	Blockchain Technology and Its Related Concepts	11
2.3	3.1 Types of Blockchain	12

2.3	3.2	The Concept of Blockchain Technology	12
2.3	3.3	Integration of Blockchain and IoT Technologies	15
2.4	Etł	nereum Blockchain	16
2.4	4.1	Smart Contract	17
2.5	De	ep Learning (DL)	18
2.6	Int	erplanetary File System (IPFS)	18
2.7	Fac	ce Synthesis System	19
2.7	7.1	Non-Fungible Token (NFT)	20
2.8	Re	view of Existing E-voting Systems	21
2.8	8.1	Blockchain-based Online Voting System (BOVS)	23
2.9	Re	view of Related Works	23
2.10	De	ep Learning Architectures	25
2.1	10.1	Restricted Boltzmann Machine (RBM)	28
2.1	10.2	Deep Belief Network (DBN)	33
2.1	10.3	Autoencoder (AE)	35
2.1	10.4	Deep Convolutional Neural Networks	41
2.1	10.5	Types of Deep Learning Approaches	47
2.11	Blo	ockchain, IPFS, and Voter Registration	48
2.1	11.1	Deep Learning and IPFS	50
2.1	11.2	Blockchain and Contestant	50
2.1	11.3	Blockchain and Voting	50
	СНА	PTER THREE: METHODOLOGY	52
3.1	Int	roduction	52
3.2	Re	search Methodology Mapped to Objectives	52
3.3	Re	search Instruments	54
3.4	De	scription of Datasets Used on the Adapted Model	54
3.4	4.1	Adience Dataset	55
3.5	Sel	lection of Neural Network Technique	55
3.5	5.1	Implementation of CNN Algorithm (Adapted)	55
3.5	5.2	Batch Normalization (BN) (Adapted)	58
3.5	5.3	Dropout (Adapted)	60
3.5	5.4	Face Detection with Haar Cascades (Adapted)	60

3.5	5.5	Gender Recognition with CNN (Adapted)	61
3.5.6		Age Recognition with CNN	61
3.5.7		Early Stopping	62
3.6 Implementing and Integrating IPFS with CNN		63	
3.7	Imp	blementing Blockchain Smart Contract	63
3.8	Tes	ting the Model	64
3.9	Val	idation and Evaluation Techniques	66
3.10	Sys	tem Requirements	67
3.1	0.1	Software and Tools Requirements	67
3.1	0.2	Hardware Requirements	68
3.11	Rec	quirement Engineering for the Blockchain	68
3.1	1.1	User Requirement	68
3.1	1.2	Requirement Analysis	69
3.1	1.3	Functional Requirements	69
3.1	1.4	Non-Functional Requirements	69
3.12	Sys	tem Model	70
3.1	2.1	Flow Diagram or the System Design	71
3.12.2 Use Case Diagram		71	
3.12.3 Sequence Diagram		74	
3.13	Pre	sented Network Architecture	75
3.14	The	e Proposed Model	78
3.1	4.1	Activity Diagram for the Proposed Model	80
(CHA	PTER FOUR: RESULTS AND DISCUSSION	82
4.1	Pre	sentation of Experimental Results	82
4.2	Adi	ience Dataset	82
4.3	Inte	erface and Module	83
4.3	8.1	Admin Module	83
4.3	3.2	Voter Module	83
4.3	3.3	Smart Contract Deployment	83
4.3	8.4	Smart Contract Functionality	85
4.3	8.5	Visual Studio IDE	86
4.3.6		Election smart contract codes in visual studio	87

4.3	4.3.7 Migration.json Codes		88
4.3	.8	Migration Page	89
4.3	.9	The Interface That Activates the Camera	91
4.3	.10	Send Image to Ipfs	91
4.3	.11	Image Hashed in Ipfs Server	91
4.3	.12	The hashed Image and the MetaMask	92
4.3	.13	Image Successfully submitted on the Blockchain	93
4.3	.14	Casting of Votes	93
4.3	.15	Add Candidate GUI	94
4.3	.16	Add Candidates Page	95
4.3	.17	Casting of Votes	96
4.3	.18	Election Result	98
4.3	.19	Results of the Deep learning Age and Gender Estimation	98
4.3	.20	Threshold and Cut-Off	100
4.3	.21	Evaluating the Model	100
4.4	Dis	cussion of Results on the Objective of the Study	102
4.4	.1	Discussion of Results on Objective 1	102
4.4	.2	Discussion of Results on Objective 2	103
4.4	.3	Discussion of Results on Objective 3	103
4.4	.4	Discussion of Results on Objective 4	104
4.5	The	e Discoveries in the Study for the Research Questions	105
4.5	.1	Discussion on Research Question One	105
4.5	.2	Discussion on Research Question Two	106
(CHA	PTER FIVE: CONCLUSION AND RECOMMENDATION	107
5.1	Sur	nmary	107
5.2	Co	nclusion	108
5.3	5.3 Contribution to Knowledge		109
5.4	Ger	neral Implications of Discoveries and Recommendations	109
5.5	5.5 Limitations of the Study		109
REFE	REN	CES	111

LIST OF FIGURES

Figures	Title of Figures	Page
Figure 2.1:	Flow Chart of Gender/Age estimation system	20
Figure 2.2:	OVIS Model	22
Figure 2.3:	Schematic diagram of RBMs	29
Figure 2.4:	Schematic Diagram of DBN	34
Figure 2.5:	Schematic Diagram of AE	36
Figure 2.6:	Schematic structure of CNN	43
Figure 2.7:	The conceptual structure of CNN	44
Figure 2.8:	Nigeria Age Demography from 2009-2020	49
Figure 3.1:	Workflow Methodology of the Study	54
Figure 3.2:	Flow Diagram for the model	71
Figure 3.3:	Use case diagram for blockchain voting	72
Figure 3.4:	Use case diagram for the Administration of the blockchain	73
Figure 3.5:	Sequence diagram for Login and Registration	74
Figure 3.6:	Sequence diagram for the casting of vote	75
Figure 3.7:	The Adapted CNN Architecture	76
Figure 3.8:	Complete schematic diagram of the adapted CNN architecture	77
Figure 3.9:	Activity design for the proposed model	81
Figure 4.1:	Deployment of the Smart Contract	84
Figure 4.2:	Remix Functionality Testing page	85
Figure 4.3:	Ganache Blockchain Page	86
Figure 4.4:	HTML Codes in Visual Studio	87
Figure 4.5:	Smart Contract Election codes in Visual Studio	88
Figure 4.6:	Migration.json Codes in Visual Studio	89
Figure 4.7:	Migration page	90
Figure 4.8:	Camera Activation Interface	91
Figure 4.9:	Eligible voter cleared by the age prediction model	91
Figure 4.10	: Ipfs Hashed Image	92
Figure 4.11	: The Hashed Image and MetaMask	92
	XII	

Figure 4.12: Ipfs Image Successfully Submitted on the Blockchain	93
Figure 4.13: Voting and Result page	94
Figure 4.14: Add Candidate and Meta Mask Page	95
Figure 4.15: Add Candidate Page	96
Figure 4.16: Voting and Result page	97
Figure 4.17: Election Result Page	98
Figure 4.18: Age and Gender Predicted	99
Figure 4.19: Visual Studio Terminal GUI for the Completed Age Estimation Model	100

LIST OF TABLES

Tables	Title of Tables	Page
Table 2.1: Statistical Residuation	epresentation of Registered Voters in Nigeria from 2007-2019	48
Table 3.1: The Adience	Faces benchmark table	55
Table0.2: Software Rec	luirement	67
Table0.3: Hardware Re	quirement	68
Table 4.1: The Adience	Faces benchmark table	82
Table 4.2: Confusion M	fatrix for the CNN	101
Table 4.3: Performance	Accuracy of the Presented Model	102

LIST OF ABBREVIATIONS

3D	Three Dimension
3MDNN	Maximum Margin Multimodal
AAM	Active Appearance model
AE	Autoencoder
AES	Advanced Encryption Standard
AI	Artificial Intelligence
ANN	Artificial Neural Network
ASR	Automatic Speech Recognition
BOVS	Blockchain-based Online Voting System
BCI	Brain-Computer Interface
CADD	Combined Annotation-Dependent Depletion
CAE	Contractive Autoencoder
CD	Contrastive Divergence
CRBM	Conditional Restricted Boltzmann Machine
CNN	Convolutional Neural Network
DAE	Deep Autoencoder
DBN	Deep Belief Network
CDBN	Convolutional Deep Belief Network
CRF	Conditional Random Fields
DCN	Deep Convolutional Network
DL	Deep Learning
DNN	Deep Learning Network
DPM	Deformable Part-based Model
DRBM	Discriminative Restricted Boltzmann Machine
DRE	Recording Electronics Voting Machine
DRL	Deep Reinforcement Learning

ELM	Extreme Learning Machine
EVM	Ethereum Virtual Machine
FC	Functional Connectivity
FNIRS	Functional Near-Infrared Spectroscopy
FTT	Fast Fourier Transfer
HDRBM	Hybrid Discriminative Restricted Boltzmann Machine
HMM	Hidden Markov Model
HPR	Hand Posture Recognition
HRRS	High Resolution Remote Sensing
HTML	Hypertext Markup Language
GMM	Gaussian Mixture Model
GRU	Gated Recurrent Unit
GUI	Graphical User Interface
IDL	Institute of Deep Learning
INEC	Independent National Electoral Commission
IODA	Input/output Deep Architecture
IPFS	Interplanetary File System
LM	Language Model
LSTM	Long-Short Time Memory
ML	Machine Learning
MLP	Multi-layer Perception
MMI	Maximum Mutual Information
MRI	Magnetic Resonance Imaging
MSE	Mean Square Error
NFT	Non-Fungible Token
NN	Neural Network
PBB	Public Ballot Board

POW	Proof of Work
PSOWNN	Particle Swarm Optimized Wavelet Neural Network
RBFNN	Radial Bases Function Neural Network
RBM	Restricted Boltzmann Machine
RCN	Recursive Convolutional Network
RL	Reinforcement Learning
RNN	Recurrent Neural Network
SD	Standard Deviation
SDAE	Separable Deep Autoencoder
SFC	Supervised Fuzzy Clustering
SVM	Support Vector Machine
TDNN	Time-delay Neural Network
TRBM	Temperature Restricted Boltzmann Machine
UML	Unified Modelling Language

ABSTRACT

Elections around the world have become a major international concern since the inception of modern democracy. It is a fact that the success of any democracy depends largely on its electoral process. In conducting a free and credible election, the process must be transparent to be adjudged credible. The electioneering process begins with the compilation of a voter register; this register contains the details of every eligible voter as stipulated by law or guild lines that guilds the electoral process. As part of what makes up, the guidelines are age restrictions for every intended voter. It is forbidding by law in most countries for a child to register as a voter, but this is not so in reality in most countries, especially in a developing nation. Because the age restriction is not obeyed, this has resulted in the incidences of underage voters and disputed election outcomes. This work provides an efficient and effective solution for the above concerns, using multiple digital solutions. The model will be integrating a deep learning Convolutional Neural Network (CNN), an Interplanetary File System (IPFS), and an Ethereum Smart Contract Blockchain. The role of the CNN is to detect any underage individual who intends to register as a voter. The CNN is built with a pretrained dataset, and it was trained with an age classifier that grouped the age on the images on the data set into eight distinct groups. This age grouping will help the age predictive algorithm estimate and place every image on the camera in a unique age group. This will only produce a binary result, which is "eligible to voter or not eligible to vote." This outcome is based on the preset threshold cut-off on the age group. The Interplanetary File System (IPFS) will provide a large storage capacity that will allow for off-chain data storage and still provide the model with all the functionalities and benefits of the blockchain. It also provides a hashing function that will assign and identify every registered voter with a unique cryptographic Identity. This ID will prevent the storage of the same information into the database, in so doing, eliminating multiple voting. Finally, the blockchain will provide a voting platform where the model will be implemented. It will allow every registered voter with a unique ID to create an account and vote on the blockchain. The adapted CNN was tested and evaluated and shows 85.9% performance accuracy, and when compared against two other age predictive models, it recorded an increase of 1.2%. In comparison, the complete digital solution model recorded 95.3% in performance. We believe this model will perform even better when subjected to further research work.

Keywords: Deep Learning, IPSF, CNN, Blockchain, Smart Contract, Age Estimation, E-Voting