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Abstract: The paper investigates the stability of the SIR mathematical model of transmission of 

an infectious disease with delay. First, the study investigates local stability of the positive steady 

state of an infectious disease model by analyzing the linearised system where more general 

stability criteria with delay and model parameters are obtained.  Secondly, the study shows that the 

model exhibits Hopf bifurcation on choosing the delay as a bifurcation parameter. Conditions for 

existence of qualitative behaviour for positive steady state are identified. Finally, numerical 

simulation of results and biological interpretations were verified using MATLAB software for the 

delay model. The study supplements theoretical improvement to earlier results obtained in the 

literature. 

 
Keywords: Characteristic equation, Differential equations, Hopf bifurcation, Reliable Jacobian Matrix, 

Stability analysis. 

1.0: Introduction: 

For several years, the outbreak of infectious diseases has been a great challenge and has been studied by 

various researchers. It has been observed that the ability to make predictions concerning infectious 

diseases enabled scientists to evaluate inoculation or isolation plans, which further have a significant 

effect in reducing the mortality rate of a particular population or species. Transmission of infectious 

diseases, such as tuberculosis, cholera, measles, smallpox, and their dynamics have been modeled by 

many scientists and mathematicians along this line. It is also evident that the application of mathematics 

to proffer solutions, regulate, control and reduce epidemic outbreaks has proven very successful [1-6]. 

Kermack & McKendrick [7] earlier developed theoretical papers on infectious disease models using 

differential equation model. Ever since then, different deterministic and stochastic models have been 

formulated and applied to a variety of infectious diseases. For example, see [4, 8]. Different reasons have 

been adduced to spread and transmit infectious diseases [9-10]. However, in modeling infectious disease 

transmission models, it is sometimes necessary to divide the total population into various groups and 

subgroups depending on different infection rate, multiple infection, among others. An example of such 

compartmentalisation is the SIR model where   is the total susceptible group to the disease,   is the total 

infected group to the disease and   is the total recovered group. In some cases, the infected or recovered 

population is categorised into subgroups [11-15], while in other cases, there may be multiple infections 

[16]. Recently, many variations of SIR model involving complex diseases and infection mechanisms have 

been studied. The role of infectious disease in stabilizing the population is significant, hence the need for 
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a realistic mathematical model.  For instance, Liu et al., [17] in their mathematical model, considered the 

spread of disease in favour of bilinear law (i.e.,  ( )     ( ))S). In this case,  ( ) becomes unbounded 

when   is large making the model equation complicated and unrealistic.  In their investigation, [18-21], 

gave realistic reasons in favour of nonlinear transmission rate of infectious disease, especially when such 

disease is transmitted from one person to another susceptible person. Since the process of infection is not 

instantaneous, there is the need to include time delay for more realistic disease models. 

The qualitative character of solutions of delay systems drives system models to exhibit complex 

characteristics such as periodic orbits, sustained oscillation, chaotic attractors, and classifications  induced 

by different bifurcation analysis and stability switches [22]. These qualitative features make possible 

parameter classification for delay-independence stability and delay-dependence stability that are 

complicated and challenging in stability analysis. However, applications of model dynamics resulting 

from the inclusion of time delay and nonlinearity in mathematical formulations provide realistic results in 

infectious disease transmission models. It is now obvious that stability behaviour of systems are 

commonly studied property and the mathematical formulations of underlying structure of stability of an 

infectious disease models attracted a lot of research attention in investigating the relative stability of the 

qualitative behaviour dynamics in science, technology and engineering. For points around equilibriums, 

linear terms will dominate the higher-order terms, and Taylor’s formula of order one is employed for 

linear stability. Since around equilibrium point, qualitative behavior of nonlinear systems is similar to that 

of the linearised systems, therefore, finite dimensional linear method is employed to determine the 

stability of equilibrium point of nonlinear system. For a more realistic model, the study employed 

intracellular delay based on existing SIR mathematical model of [8, 12],  investigated the qualitative 

behaviour of the delayed system using linearization techniques. The distribution of roots on right-hand 

plane coupled with conditions for stability switch were derived using Hopf bifurcation. Numerical 

simulations and biological interpretations of equilibrium results are discussed using MATLAB software. 

The paper for study is structured such that Section 1 gives general introduction of the study. Section 2 

provides the underlying assumptions and existence of solution of the considered model. Section 3 

provides the stability analysis of the model at specified point and the Hoph bifurcation discussed. The 

numerical simulations and biological interpretations of the nontrivial stability are discussed in section 4 

and finally, the paper is remarkably concluded. 

 

2.0:  The Mathematical Infection Disease Model 

For investigation of qualitative behavior of delay systems, this study is motivated by susceptible infection 

(SI) epidemic model of open system with variable size studied by Golam, Panja & Mondal, 2020 and of 

the form, 
  

  
   ( )   (   )

  

  
         (   )    

},                                                         (1) 

where  (  )      ,  (  )      . 

The dependent variables   and   are the population sizes of susceptible and infected of the infectious 

diseases. In this model,  ( ) represents the susceptible intrinsic growth rate of the susceptible population, 

 (   ) represents the transmission rate of the disease expressing nonlinear mass action and   is the 

addition of the death rate due to the presence of the disease   and the natural death rate   i.e.,        
Based on the preceding model, this study considered a more general SI model which included the 

recovered population, represented by   as in the works of [7, 12] of the form 

 

  ( )             

  ( )      (   ) 

  ( )                      
}                                                             ( ) 
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On defining the delay term,   the associated delay differential equation becomes 

 
  

  
            

  

  
   (   )  (   ) 

  

  
       }

 
 

 
 

,                                                             ( ) 

where, 

 (  )      ,  (  )      ,  (  )       and    ,   -. Let   (        ) from where 

   
  *                    +. 

The dependent variable   is the total susceptible group to the disease,   is the total infected group to the 

disease and   is the total recovered group. From equations (2) and (3),   is the recruitment into the 

population,   is disease transmission rate,   is natural death rate while   is death rate due to presence of 

the disease. The equation (3) is a delay model consisting of three components and a discrete disease 

transmission time delay describing the time between infection and the time the susceptible individual gets 

infected. Motivated by the models above, this study investigated the stability of transmission of an 

infectious disease delay model of system (3) with intracellular delay term  . Based on the preceding 

assumptions and motivations from equations ( ) and (2), the study investigates model (3) for local 

asymptotic stability using methods of characteristic and algebraic tools. The study, which incorporates 

intracellular delay terms, followed the work of [23, 24]. For general investigation of local stability, the 

study provides a detailed analysis of the delay equation (3), which improves the work of previous authors 

such as Song & Xiao, 2017. 

The study investigates the stability of solutions of model (3). The study equally analyse and provides 

conditions for stability of solutions of model (3). The effect of delay on stability is verified using 

MATLAB software to confirm the theoretical results of the complex dynamics. 

For preliminary analysis of model (3), we explore some basic properties of solutions to system of 

equations (3). The theorems below established the positivity and boundedness of solutions of model (3). 

 

Theorem 1: For positive initial data, solutions of equations ( ) are positive for all    . 

Proof:  From the first equation of system (3),  

                   
  

  
           

We claim that  ( )    for all    . Suppose not, there exist      and      such that  ( )    for 

      ( )    for      and  ( )    when   ,        ). Thus   

      
  

  
      (  ) (  )    (  ) 

               . 

This is a contradiction. Hence  ( ) is positive for all    . 

From the second equation of equations (2), 
  

  
   (   )  (   ) , 

  

 
 ,  (   )  (   )-  , 

where on integrating and based on the initial value, we have 

 ( )    ( ) 
∫ ⌈  (   ) (   )⌉  

 

  

This implies  ( )    for all     since   ( )   . Hence  ( ) is positive for all    . 

Also, from the third equation of equations (2),   ( )      ,        
  

 
      , and on integrating based on the initial value, we have 

 ( )     
   . 

This implies  ( )    for all    . Hence  ( ) is positive for all    . 
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Theorem 2: The solutions of model ( ) are ultimately bounded. 

Proof: Let        .  

           
  ( )

  
      (   )       ( (   )   ( )) 

Since coefficients of    (   ) and   ( ) are equal, solutions need not approach the origin but a positive 

limit. 

Thus,  
  ( )

  
      (   )     

Choose a constant      such that 

    
  ( )

  
       (   )  (   )(   )   (   ) 

Define      *       + such that 

   
  ( )

  
     . Therefore,      ∫         yields 

 ( )  
 

 
 .   

 

 
/       and         ( )  

 

 
  Hence the result. 

 

For the phase space of this study, let   ,   ) be a positive number and the Banach space   is the vector 

space of continuous functions mappingthe interval ,    - into   
  with the norm 

‖   ‖        ,    -  (  )      . 

The following definition is employed for the investigation of stability analysis in this study. 

Definition: Let         be a linear map. The flow of   is  (    )     
  . Let {  } be the 

characteristic values of   . Then {    } are the characteristic values of   . Suppose        for all  , 

then |    |          as    . In this case, the origin 0 is asymptotically stable. If there is    with 

    , say  , we say the point   is unstable. 

Since stability analysis of delay systems is simpler to investigate in a complex plane, the study implored 

some relevant results in spectral theory for easy analysis of characteristic roots. 

Theorem 3:  If       is a bounded linear operator on a Banach space and let  ( ) be the spectrum, 

 ( )  *                                                       +. Then  ( ) is nonempty, compact 

and for    ( ),     ‖ ‖. The spectral radius defined by  ( )     *        ( )+ is given by the 

spectral radius formula of the form 

                                              ( )        ‖  ‖
 

 . 

From the theorem above, the existence of finite roots in the right half complex plane   is assured. The 

following lemma gives better techniques to investigate the asymptotic stability of linearised systems by 

computing the characteristic roots.  

Lemma 1:  If      , then the roots of the linear delay differential equation  

 

                              
  ( )

  
   (   )    ( ) approach    as    . 
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The primary interest in investigating the stability analysis of system (3) is to identify the value of the 

delay for which the real part of the principal root   (  ) becomes positive. The characteristic roots at the 

critical delay   (  ) passes through and continue in the positive real half plane if the criteria  

 

  
    ( )|

    

   is satisfied. The following theorem supports the objective of bifurcation for the 

study. 

Theorem 4: (Rouche’s Theorem): Let   be an open set in  , the set of complex numbers,   a metric 

space,   a continuous complex valued function in    , such that for each    ,    (   ) is 

analytic in  . Let     be an open set in   whose closur such that  ̅ in   is compact and contained in  , 

and      be such that no root of  (   ) is on the frontier of  . Then there exists a neighbourhood   of  

   in   such that; 

i. For any    ,  (   ) has no zero on the frontier of  ; 

ii. For any    , the sum of the orders of the roots  (   ) belonging to   is independent of  . 

2.1 Linearization For Autonomous Constant Delay Differential Equations 

Thus, around equilibrium qualitative, the behaviour of nonlinear system will be similar to that of the 

linearised system. For linearization of autonomous constant delay system in   , we consider 

 ̇( )   ( ( )  (    )  (    )      (    )). 

Let  (           )           satisfy  (         )   , so     is a steady state i.e., 

                                       ̇( )     ( )  ∑    (    )
 
   ,      

where,       and        are     matrices evaluated at the steady state, which are essentially 

Jacobian matrices for each delay, making linearization a variational equation (Humphries, 2016). 

3.  Stability Analysis of an Infectious Disease Model 

In order to determine the behaviours of the system, system (3) is rewritten with the following expression 
  

  
                  (      )

  

  
   (   )  (   )   (      )

  

  
      
            

  (      ) 
}
 
 

 
 

,                                         ( ) 

 

The equilibrium of system (3) can be obtained by solving the equations 

                                     
  

  
     

  

  
   and  

  

  
  .                                                           (5) 

Direct solutions of system (3) yield two kinds of equilibriums. The trivial equilibrium   (     ) which 

describes the absence of the disease and the positive interior equilibrium at   (          ) representing 
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the presence of the disease. For disease free equilibrium (DFE), (        ), system (3) becomes system 

(2) in the absence of delay (Egbetade et al,, 2018). 

3.1 Stability Analysis of an Infectious Disease Equilibrium with Delay 

For stability analysis of positive equilibrium point at   (        )  we solve system (4) for when     

and obtained the equilibrium point   (        )  .
   

 
 
    (   )

 (   )
  /. The linearised system of  (3) at 

  (        )  .
   

 
 
    (   )

 (   )
  / yields 

  

  
              

  

  
     (   )  (    (   )) 

  

  
     }

 
 

 
 

.                                                   (6) 

 

Since linearisation in DDE is a variational equation, the     matrices evaluated at the steady state for 

endemic equilibrium   (        )  .
   

 
 

    (   )

 (   )
  / of equation (4) yields  

 

  
(

 ( )

 ( )

 ( )
)     (

 ( )

 ( )

 ( )
)     (

 (   )

 (   )

 (   )
)                                          (7) 

where      and      are partitioned matrices of order 3 and the associated nonzero reliable Jacobian matrix 

of the linearised system (7) is given by 

     (
 .

    (   )

(   )
  /  (   )  

   
    

) and      (

   
    (   )

(   )
  

   

). 

For stability analysis of positive equilibrium of equations (4) at   .
   

 
 
    (   )

 (   )
  /, we consider the 

associated reliable Jacobian matrix of the characteristic equation of the form 

                                        |            |   .                                                             (8) 

Equation (8) yields the characteristic equation of the form 

||

  .
    (   )

(   )
  / (   )  

 .
    (   )

(   )
/       

     

||   .                                             (9) 

 

Thus, the associated characteristic polynomial of equations (8) and (9) is a quasi-polynomial 

(transcendental) function and is expressed as: 

      
          

       
     ,                                             (10) 
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where the parameters              are given as 

(

  

  
  

  

)  

(

  
 

  
  

(   )

   

(   )

        

          )

  
 

,                                                 (11) 

 

However, unlike polynomial functions in ODE equation, equation (  ) becomes complicated and 

difficult to handle. Firstly, it is a quasi-polynomial (i.e., transcendental) function with infinitely many 

characteristic roots. Secondly, since it is a transcendental function of which Routh-Hurwitz criterion 

cannot be applied; and thirdly, some known general tests can applied for negative root test. Hence, the 

need to investigate the stability of equation of (10). For stability analysis of equation (10), we assume that 

conditions for asymptotic stability for     are satisfied. That is at      equation (10) becomes 

      
  (     )      .                                                        (12) 

The derived Routh-Hurwitz criterion for negative root test is given by 

    ,    
  

  
                                                                     (13) 

Equation (12) yields exactly the associated characteristic polynomial equation of system (2), with the 

parameter values          and       for system of (3) at    . 

By Rouche’s Theorem and negative root test, we subject equation (10) to Hoph bifurcation analysis 

following the ideas in the work of [25]  while other aspects of epidemiology of related interest include 

[26-28]. The existence of a solution can be proved using Mawhin's coincidence degree theory and other 

well-known theorems for highly nonlinear versions of the considered model [29-31]. For positive root 

test, we let  ( )   ( )    ( ) (     ) be the eigenvalues of equation (  ), where  ( ) and   ( ) 

depend on the intracellular delay. Since the positive equilibrium of equation (3) is stable when    , it 

follows that  ( )    when    . By continuity, if     is sufficiently small we have  ( )    and the 

positive steady state    remains stable. If  (  )    for      such that     (  ) is a purely 

imaginary root of (11), then the positive steady state    losses its stability and eventually becomes 

unstable where  ( ) is positive. If  ( )   (  )    (  ) is the continuation of the root of   , it is 

necessary to confirm that the root continue into the positive half plane as   increases past   . Thus, the 

criterion for nondegeneracy to occur is 
 

  
  ( )|

           

  . By the procedure for positive root test, 

we analyse the positive equilibrium by replacing      in equation (10) to get 

(  )    (  )    (  )    (  )  (  )     
 (  )    

which yields, 
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           (            )    (            )   .           (14) 

Separating equation (14) above into real and imaginary parts, we have 

   
                                                                  (15) 

                         ,                                               (16) 

and adding the squares of (15) and (16) yields 

   (  
     ) 

  (  
    

 )     
   .                                  (17) 

For the reduced form of (17), let     ,      
     ,      

    
 ,     

 .  

The reduced form of equation (17) therefore yields 

 ( )               .                                                             (18) 

Assume that      
     we therefore make the following claim. 

Claim1. 

If     and    , equation (18) has no positive roots. But 

    
  ( )

  
          . 

For the roots of (19), 

            ,                                                             (19) 

where  

     
   √     

 
                                                              (20) 

If    , then          i.e., √       . Therefore, neither    nor    is positive and stability is 

assured. Hence, the claim that equation (10) have  all negative real roots for delay      and hence the 

system is stable. Equation (18) is a polynomial with positive coefficients and cannot induces positive real 

roots for    . So, the introduction of delay cannot lead to a bifurcation. Hence, equation (18) does not 

have purely imaginary roots for all delay. Hence the proposition below: 

Proposition 1:  Given the characteristic equation of infectious disease model of system (3), 

                                     
          

       
     . 

Suppose that, 

i.     ,       .      
  

  
/   , 

ii. for     and    ,     , 

then the steady state    of system (3) is absolutely stable in which we say    is asymptotically stable for 

all    . 
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We now consider the effect of positive intracellular delay,    on the stability of positive equilibrium    of 

equation (10) by studying the distribution of the roots. In other words, we seek conditions on   under 

which equation (10) has a pair of imaginary roots. For distribution of positive roots in the complex plane 

of equation (10), we let  ( )   ( )    ( ) be the eigenvalues of equation (  ) near      satisfying 

 (  )    and  (  )    . From equations (15) and (16), we have 

                               0
    

  
 

         

    
1    

       

                           
  

       

    
 

      

  
   

       

   
  

  
0      .

      
      

        
 

  
   

    
 /1 

   

  
,                       .                 (21) 

At     , we have 

   
 

  
0
      

      
        

 

  
   

    
 1                                                                   (22) 

Thus at     , equation (10) has two simple complex conjugate roots      while all other roots lies in 

the complex half plane. From the analysis of the reduced form of equations (17) through (19), proposition 

2 indicates that if the parameter values satisfy conditions ( ) and (  ), then the infective (positive) steady 

state of equations ( ) is asymptotically stable for all delay values. If in addition, any of the conditions 

(say condition (ii)) in proposition 2 is not satisfied, then the stability of the positive state depends on the 

delay values and  the delay induces  oscillations. For example, from equation (20), if    , then 

√       . Therefore, 

    
 

 
.   √     /   .  

It follows that equation (  ) and hence (  ) has a positive root     This implies that equation (  ) has 

two simple complex conjugate roots      at a sequence of critical values   . Since equation (  ) has a 

pair of purely imaginary roots      at a sequence of critical values   , from the analysis above, and for 

simplicity, we can rewrite   
  and   

  as   . Thus, we can now derive a pair of purely imaginary root 

   from equation (10) with     . Let {  
 }

   

 
 *  +   

  such that                               , 

where,       *     +. Hence proposition 2 below 

 

Proposition 2: Given the characteristic equation of infectious disease model of equation (3), 

                                         
          

       
     . 

Suppose that,  

i.     ,     , (     )  
  

  
, If either  

ii.    , or  
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iii.     and     is satisfied, 

then the infective (positive) steady state    of model (3) is asymptotically stable when      and 

unstable when     . 

Thus, at       a family of periodic function bifurcates at    as   passes through the critical value     

Thus delay model undergoes Hopf bifurcation at certain value of the delay if the parameters satisfy the 

conditions in (ii) and (iii). 

Due to Rouche’s theorem and the continuity of  , from functional delay differential equation theory for 

every                   , there exists a     such that  ( ) is continuously differentiable in   for 

        . 

Denote  ( )   ( )    ( ) to be the characteristic roots of equation (  ) near      satisfying 

 (  )    and  (  )    . On substituting  ( ) into the left-hand side of (  ), and taking the derivative 

of   with respect to   yields the Hopf bifurcation with the transversality condition given by  

⌊
   ( )

  
|
  

⌋
         

  ,  (               )  

From equation (10), we have 

                                            
          

       
     , 

and on taking the derivative of   with respect to  , we have 

  

  
[               

         
        

   ]     
          

    

                     
  

  
 

                

                                    

             [
  

  

  
]  

(           )    (           )

        
,  

and on replacing        we have 

            [
  

  

  
]    0

(    
           )(              )(             )

     
       

1, 

and on taking the complex conjugate of the denominator, we get 

                      [
  

  

  
]    2

     

 
3, 

where, 

 

  (     
              

 )  
         

  (              
      )         ,      

  and     
   

    
   

 . 

If  (     
              

 )  
         

 

 (              
      )            

    and (     )    are satisfied. 
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Hence lemma 2 below follows: 

 

Lemma 2: If  (     
              

 )  
         

 

 (              
      )            

    is satisfied, then  

 

                                       ⌊
   ( ( ))

  
|⌋

             

 
 ( ( ))

  
   is satisfied.  

In fact, when     , substituting  ( ) into the left-hand side of the first equation of (10) and taking 

derivative with respect to  , we have 

                0
  

  
1
  

 
            (           )    

        
  which leads to ⌊

   ( ( ))

  
|
  

⌋
             

  . 

From choice of suitable Lyapunov function, we can discuss the global stability of system (3) around the 

interior equilibrium point.   

3.2  Numerical Examples of Positive Equilibrium of Delay Infectious DiseaseModel 

From equation (11) and the parameter values for              and       (Egbetade et al., 2018), 

we have 

                                      (

  

  
  

  

)  (

     
     
     
      

). 

On substituting and simplifying equation  (10), equation (17) therefore yields 

   (  
     ) 

  (  
    

 )     
   , 

and with the parameter values of 

    
            ,     

    
        ,     

         , 

we have                               . 

Substituting the parameter values in equation (17) yields the required value of     0.5972, 

Therefore,              and          .  

The graphical representations of the data are in the following figures 1-3: 
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Figure 1: The Plot shows the stability of the Delay model when            (calculated). Note the 

difference in the dynamics when compared with the ODE model. 

 

 

 
Figure 2: The Plot showing the bifurcation of the delay model at when         
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Figure 3: Plot showing the instability of the Delay model when             . 

 

4.0: Conclusion 

The study investigated the dynamical behaviour of a disease infection model with a discrete delay term 

using Hopf bifurcation. The study established that under certain conditions, there exists a critical value   

for positive stability of delayed disease model and showed that some families of periodic solution appear 

when the delay passes through some certain critical values as can be observed from figures 1-3. If 

  ,   ), the infected steady state of the model is asymptotically stable i.e., the disease keeps a steady 

state. When the delay term   switches, through some critical values             , the positive 

equilibrium loses its stability and a Hopf bifurcation occurs. However, a chaotic or aperiodic phenomenon 

may occur when the delay is large, as observed in figure 3. 
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