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Abstract

Existence results for a resonant third-order integral m-point boundary
value problem on the half-line with dimension of the kernel of the
linear differential operator equal to two are established. The tools that
will be employed in this work are the Mawhin’s coincidence degree
theory, relevant algebraic methods and operators. An example will
also be used to illustrate our resullt.

1. Introduction

Boundary value problems on an unbounded domain are encountered in
the study of many physical phenomenons such as the study of unsteady flow
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2010 Mathematics Subject Classification: 34810, 34B15.
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of fluid through a semi-infinite porous media and radially symmetric
solutions of nonlinear elliptic equations. They also arise in plasma physics
and the study of drain flows, see [10].

Boundary value problems whose corresponding homogeneous boundary
value problem has a non-trivial solution are said to be at resonance.
Resonant problems can be expressed in abstract form as Lu = Nu, where
the differential operator L is not invertible. Mawhin’s continuation theorem
[8] is used to study cases where L is linear. Many authors have recently
considered the problem of existence of solutions for resonant boundary value
problems when the dimension of the linear operator is either one or two, see
[1, 6, 12, 9, 3, 7, 13]. However, to the best of our knowledge, only few
authors in the literature have considered boundary value problems having
integral boundary conditions with dimension of the kernel of the linear
operator equal to two, see [11, 2]. Most of the works have considered
second-order boundary value problems but not third-order boundary value
problems.

This work considers the existence of solutions for the following resonant
third-order boundary value problem having m-point integral boundary
conditions on the half-line:

u"(t) = f(¢t, u(t), u'(t), u"(t)), te(0,+o), (1.1)

u(0)= 0, (0) = Za,.jf" v, w(s=) = Y8, [V woa, 12)
i=1 J=1

where [ :[0, +0)x R> > R is an L'[0, +o0)-Carathéodory function,
0<& <& <--<E, <+, 0<M <M <--<1M, <+, o; R, i=

1, 2, ..., m and BJ- eR,j=12,..,n

In Section 2, necessary lemmas, theorems and definitions are given,
Section 3 is dedicated to stating and proving condition for existence of
solutions. An example is given in Section 4 to corroborate the result
obtained.
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2. Preliminaries
In this section, we will give some definitions and lemmas that will be
used in this work.

Take U, Z to be normed spaces, L :dom L c U — Z is a Fredholm
mapping of zero index and P:U —» U, Q:Z — Z projectors that are

continuous such that
ImP=kerL, kerQ=ImL,U=kerL®kerP,Z =ImL® ImQ.
Then

L| gom 1(ker p - dom L N ker P — Im L

is invertible. The inverse of the mapping L will be denoted by K, : Im L
— dom L(\ker P while the generalized inverse, Kp o :Z — dom L(\ker P
is defined as Kp g = K,(I = Q).

Definition 2.1 [15]. A map w:[0, +0)xR> > R is L[0, +)-

Carathéodory, if the following conditions are satisfied:

(i) for each (d,e, f)e R3, the mapping ¢ — w(t, d, e, ) is
Lebesgue measurable;

(ii) for a.e. 7 €0, ), the mapping (d,e, f)—> w(t, d,e, ) is
continuous on ]R3;

(iii) for each k > 0, there exists ¢4 (¢) € L;[0, +o0) such that, for a.e.
t € [0, ©) and every (d, e, f) € [k, k], we have

|wit. d. e, [)] < @r(0).

Definition 2.2. Let L : dom L < X — Z be a Fredholm mapping, E be
a metric space and N : £ — Z be a nonlinear mapping. N is said to be L-

compact on E if ON : E — Z and Kp gN : E — X are compact on E.
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Also, N is L-completely continuous if it is L-compact on every bounded
EcU.

Theorem 2.1 [13]. Let U be the space of all bounded continuous vector-
valued functions on [0, o) and M < U. Then M is relatively compact on U

if the following conditions hold:
(1) M is a bounded subset of U,

(i1) the functions from M are equicontinuous on any compact interval of
[0, 00);

(ii1) the functions from M are equiconvergent at +», that is, if given an

€ >0, there exists a T =T(g) >0 such that | f(t)— f()|< €, for all
t>T and feM.

Theorem 2.2 [8]. Let L be a Fredholm map of index zero and let N be

L-compact on Q. Assume that the following conditions are satisfied:
(i) Lx # ANx for every (x, 1) € [(dom Lker L [ 0Q)] x (0, 1),
(ii) Nx ¢ Im L for every x € ker L) 0Q,
(iil) deg(ON | o, ;- kerL, 0) =0, where Q:Z — Z is a projection
with Im L = ker Q.

Then the abstract equation Lu = Nu has at least one solution in

dom LN Q.

Let

U = {u e 0, +0): tim D tim 2O and tim W) exists},

t>t0 ] + 12 ttoo L+ 1 t—>+00

with norm

| = maxdlluflg, flae s w3
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defined on U, where

|u(®)| |”’(t)|’ lul, =

[uly=sup =, ul, = sup Tar sup | u'(t)].

rel0,+o0) 1 + 7 tel0,+oo) tel0, +o0)

The space (U,

-|) by standard argument is a Banach space.
1 . +00
Let Z =LJ0, +0) with the norm |y = J.O | y(v)|dv. Define
Lu = u", with domain

m
&i
dom L = {u e U :u" e I'[0, +0), u(0) = 0, u'(0) = Zaijo u'(t)dt,
i=1

u"(+0) = ZBJ'J;U u"(¢)dt ;.
j=1

Also, the nonlinear operator N : U — Z will be defined by
(Nu)t = f(t, u(t), w'(t), u'(£)), 1 €0, +o0),
hence, equations (1.1)-(1.2) may be written as
Lu = Nu.

In order to establish conditions for existence of solution of (1.1)-(1.2),
we make the following assumptions:

&) YBmj =1 Y o =1 Y aE =0,
j=1 i=1 i=l

811 812
821 822

= =g11°82 812821 %0,

o o-| @i o

Qltze—t taZe—t

where

0w =S ai[ [ ravisar, 029 =300, [ sy
i=1 j=1
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By simple calculation, it can be shown that
ker L = {bt + ct? :h,ceR, te [0, +00)}.

Lemma2.1. ImL ={y e Z : Oy = Q,y = 0}, where

0w =S ai| [ ravirar, 029 =30, [ [ sy
i=1 j=1

Proof. Consider the problem

u"(t) =y, te[0, +0), 2.1)

which has a solution u(¢) satisfying (1.2) such that
1 ) tesert
u(t) = u(0) + u'(0)z + Eu"(O)t + .[0 IO IO y(v)dvdrds.
Integrating (2.1) from 0 to ¢, we have
t
W'(6) = u"(0) + j L) 2.2)

At t = +o0, (2.2) becomes
t ']
u"(+0) = u"(0) + .[0 y(v)dv + L y(v)dv. (2.3)

. nj; ” N »
Since Z’;:lﬁjjof dt =1, u (+oo):zjl_1:1[3j o u"(+e0)dt. From (1.2),

we have

38, j ;j u'(+o0)dt = 3 B, j :’ (1) dr.
J=1 j=1
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Hence,

ZBjI;j u"(0)dt + Z Bj_[;j _[(: y(v)dvdt + Zﬁj_[:j jtw y(v)dvdt
J=1 j=1 =1

=08, )+ Y [ [ v)ava
j=1 j=1

and

1 T]j +00
Zsjj j y(v)dvdr = 0.
- 0 T
J=1
Integrating (2.2) from 0 to ¢ gives
) =0+ ()t + [ [ 7 yv)ava 24)
u'(t)=u u v)dvdr. .
0J0 7

Applying boundary conditions (1.2), we have

W(0) = i (xijfi (u'(O) - u(0): + j ; jo y(v)dvdr)dt
i=1

, S u"(0) < < Gt
ju(O){l—ZaiéiJ— - Zaig? _I,Z:;“"Jo jojo y(v)dvddt.

i=1

Since Z;n:lo‘iéi =1 and zlr.":l(xiE_,iz =0,

n E ptprT
Zaijol J.O IO y(v)dvdrdt = 0
i=1

and

| ) L Siptre
u(t) = bt + et + IZ:;‘ (x,-JO JO IO y(v)dvdrdt,
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where b and c are arbitrary constants and u(z) is a solution to (2.1) satisfying

(1.2). Hence ImL ={y e Z : Qiy = O,y = 0}. O

We next define the operator Q : Z — Z as

2
Oy =(Ryy)-t+(Ryy)- 1,
where
1 — 1 —
Ry = 6(’"1 10 +mpOay)e™, Ryy = E(MQIQIJ’ +mp0yy)e,
and my; is the algebraic cofactor of g;;.

Lemma 2.2. The following hold:

(1) L :dom L c U is a Fredholm operator of index zero;

(i1) the generalized inverse K, : ImL — dom L ( ker P may be written

as

K,y = I;I;Lj y(v)dvdrds.

Also,

| Kyl =1yl

Proof. (i) We now make the following computations:

Ri((Ry)1) = é [0 (Riy)D)e™) + myp 0y (Ryy)r)e™ )]

[my101te™" + my,0ste™" 1(Ryy)

Ql—

(222 - €11 — &21 - €12](RyY)

Qa Q-

(R1y) = (Ryy), (2.5
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2 1 2 ¢ 2 ¢
Ri((Ryy)t”) = = [miQi(Roy)i%e™) + mn0r (Ryy) e )]
1 _ _
= E[ml 101%™ + mp0yt7e " 1(Ryy)
1
= E[gzz - 821 — 821 8021(Ryy) = 0, (2.6)
1 _ _
Ry((Ry)e*) = 5[m21Q1((R1)’)f€ )+ myp0y (Ryy)te™ )]
1 _ _
= E[MZIQlte "+ my0ste” 1(Ryy)

1
= 5[—g12 g1+ &1 gnl(Ry) =0 (2.7)
and

Ry((Roy)?) = Lm0 (Roy)Pe™) 4 mypQs(Ryy)i2e™)]
= é[mlelfze_t + myyOst*e” " 1(Ryy)
= é[—glz - 221~ &11 - €221 (Ryy)

= & (Ryy) = Ryy. (2.8)
From (2.5), (2.6), (2.7) and (2.8), we have
0%y = Ol(Ryy) -t + (Ryy) - £°]
= [Ri(Ryy) -t + (Ryy) - )]t + [Ry(Ryy) - £ + (Rpy) - £2)] - 17
= (R{(Ryy) - 1) -t + (R (Rpy) - 1)) - ¢
+ (Ry(Riy)- 1) 2 + (Ry(Ryy) - 1)) - 12
=(Ryy) t+0-1+0-12 +(Ryy)- 12

= (Ry) -t + (Ryy)-t* = Oy,

therefore, Qy is a projector.
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Let y € ImL. Then Qy = (Ryy) -t + (Ryy)- t> = 0. Next, we show that
kerQ = ImL. Let y € kerQ. Then y € Im L since Qy = 0. Conversely, if
yelImL, thenby Qy =0, y € ker 0. Hence, ker Q = Im L.

Let yeZ and y=(I-Q)y+Qy. O -Q)y=0yv-0% =0y~
Qy =0, thus (/ —Q)yekerQ=1ImL and Qy € ImQ. Hence, Z = Im L

+ ker Q. Setting y = bt + ct’ # 0, from y € Im L, we obtain the following

equations:

bte™ + Oycte™ = 0,
{Q1 9) (2.9)

lelze_t + chtze_t =0.

From (¢,), G # 0, then (2.9) has a unique solution b = ¢ = 0, implying
that ImLNImQ ={0} and Z=ImL® ImQ. Note that dimkerQ =
dimker L = codim/m L = 2. Therefore, the index of L = dimkerL —

codim/m L =2 -2 =0, thus L is a Fredholm mapping of index zero.

(i1) Let a continuous projector P:U — U be defined as
(Pu)(t) = w/(0)t + %u"(O)tz, t € [0, +o0),

Then the generalized inverse K, : Im L — dom L (1 ker P may be written

as

teset
K =I J. J. v)dvdrds.
ry=1.1.J, »(v)
For y € Im L, we have

(LKp)y(1) = (Kpy)" = (1)

and for u € dom L () ker P, we have

(KpL)u(t) = (Kp)u"(t) = I; I(:J‘(: u"(v)dvdrds
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= u(t) - u(0) — u'(0)1 — %u"(O)tz

= u(t) — u(0) — Pu(t).

Since u € dom L (\ker P, Pu(t) =0, from the boundary condition
u(0) = 0. Therefore,

(K pL)u(t) = u(t).

-1
Thus Kp = (L | o 1ker p) - AlsO,

1 +00
[Kprlg= s | (Kpm)|< [y =] vl

tel0, +o0)

1 ' +00
[Kpyli= sw gl (o) <[ 1y)lav =]yl

tel0, +o0) +
and
" +00
[ Kpylo = sup [(Kpy) <[ " 130)|dv =] 2.
tel0, +o0) 0
Then
I Kpy || = max{ll Kpy flg: | Kpy > [ Kpy o =151

Proof of Lemma 2.2 is complete. ([

Lemma 2.3. Let Q c U be open and bounded with dom L\ Q # @. If

fisa [ [0, +0) -Carathéodory function, then the nonlinear operator N is

L-compact on Q.

Proof. Let u € Q and let k >0eR. Then ||u | < k since Q is bounded.

Since fis [ [0, +00) -Carathéodory and for any u € Q, we have

I N lpr = | 0+°°| £, u(v), w0, ') v < [ o 1. 2.10)
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|O\Nu | = ‘ Zaijfi J;J(: S, u(v), u'(v), u"(v))dvdrds
i=1

lex 2 < 2
STLZIQiléi @2.11)
i=1
and
S n +w ! 14
0| =D B[ 7 S0 u) ), ) v
j=1
n
<loxlp Y |B;Im;. (2.12)
j=1
Then

[ oNul = [ | ONu(v)|av
< | 0+°° [(RiNu(v)) - v + (RyNu(v)) - v*]dv
1

Smﬂmn|'|Q1\’1“|+|’”12|'|QNzu|]

1
+m[|m21|‘|Q1N”|+|m22|'|Q2N”|]

1 Or il <
S—lG {(|m11|+|m21 |){—" 2”L z |“i|é%}
i-1

+ (myp [+ may D o [ Z| B, |ﬂj]- (2.13)

j=1

Then ON(Q) is bounded.
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We will use the following three steps to show that Kp(I — Q)N(Q) is

compact.

Step 1. Boundedness. Let € Q. Then

|Kp( - Q)Nu()| _ 1
1+ t2 1+ t2

I;I:j;(l — Q) Nu(v)dvdrds

2
t
<——(log |1 + ] ONu|,1)
2+ lox ll2 + 1 ONu |

<lorly +lONu|p,

|(Kp(I—Q)Nw) ()| 1

1+¢ T 1+t

J.(: J.OS(I — Q) Nu(v)dvds

t
< m(" 0y "L1 + | ONu "Ll)
<[ ok ”Ll + | ONu ”Ll

and

[(pt1 - QM) )] = 1 - Q)N

<[ oe llp + 1 ONullp.
From (2.10) and (2.13), we see that Kp(7 — Q) N(Q) is bounded.

Step 2. Equicontinuity. Let u € Q, 1,1, € [0, T] with #; < ¢, and
T € (0, +). Then

Kp(I —Q)Nu(ty) Kp(I —Q)Nu(t))
1+ t% 1+ tlz

_| ! j: I(:L: (I = Q) Nu(v)dvdds

1+t§
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J jj (I — Q) Nu(v)dvdrds

1+t

Itlj I (I — Q) Nu(v)dvdrds

1+2

J-tjz .[os_[(: (I = Q)Nu(v)dvdrds

1+t%

I IJ (I = Q) Nu(v)dvdrds

1+t

1 1 5] SPT
(1“22 ) 1+szI0 Iojo (I — Q) Nu(v)dvduds

I ;2 .[ OS ,f (: (I = Q) Nu(v)dvdds

1+t§
-0 |j 1|5 - J )
(1+3)(1+7)|2 3) 2 oy +ioedy)
(Kp(I = Q)Nu) (1) _ (Kp(I = Q)Nu) (1)
1+12 1+t1

m [2] = ) Nutv)avads - j [ - Q) Nut)ava
1+t J .[ (I — Q)Nu(v)dvdr + 1t2 J: J.OT (I = Q)Nu(v)dvdr
1+t.[ j (I = Q)Nu(v)dvdrx

S(‘(1+tt2)_(iz+tl)|l ‘l—i-t ‘(fz tl))("‘Pk”LlJF”QNu”Ll
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and

[ (Kp(1 = 0N () = (Kplr = )N () = [ "] (1 = Q) Nutv)

Thus, {M ‘u € 5}, {(Kp(l _ Q)Nu)’ ‘ueQ

e Q+, and
1+ 1+1

{(Kp(I-OQ)Nu) 1uecQ}—0

as f; — t, on the compact interval [0, 7] hence, are equicontinuous on

[0, 7].

Step 3. Equiconvergence at +w. Let u € Q. By L’Hospital rule, we

have
Kp(-Q)Nu)) e
Jim == 1+ 12 _EIO (o).
tli)nolo (Kp I_FQI?N”) (t) _ I:(l — Q) Nu(v)dv
and
lim (Kp(l = Q)Nu) () = [ (1 - Q) Nu(v) v
Thus,

Kp(I — Q) Nu(t)
1+ ¢

N % [ 0°° (I = O) Nu(v)dv,

(Kp(I = 0)Nu) (¢)

1+¢

> jo (I - Q) Nu(v)dv
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and
(Kp(1 = Q)Y () > [ "1 = Q) Nu(v),

hence, Kp(I —Q)Nu(Q) is equiconvergent at co. By Definition 2.2
and Theorem 2.1, Kp(I — Q)Nu(Q) is compact. Therefore, the nonlinear

operator N is L-compact on Q. This concludes the proof of Lemma 2.3. [

3. Existence Result

In this section, we establish the conditions for the existence of solutions
to the problem (1.1) subject to (1.2).

Theorem 3.1. Let f be a L[0, ©)-Carathéodory function. If (¢;), (¢,)
and the following conditions hold.

(Hy) There exist functions 8;(t), 85(t), 83(¢), 84(¢), 85(¢) € 10, +o0)

and a constant o € [0, 1) such that for all (x, y, z) € R either

u u
| £t up, up, u3) [ < 85(2) + 84(¢) 1|+3t|2 +85(1) |1 +2t|

+ 8, ()| uy |+ 51(1)( |43 j , (3.1
1+ ¢

7 s, )| < 350+ 5015 4 5500112

+62(t)|u1|+61(t)[' - 'j 3.2)

1+¢
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or

|3 | | |
| £(t, uy, up, u3) | < 85(2) + 540)@ +33()

+ 62(t)| uy | + 61(t)| uj |G. (33)

(H,) There exist constants B > 0, D > 0 such that for u € dom L if
|u'(t)| > B for t € [0, D) or |u"(t)| > B for t € [0, +), then either

ONu(t) #0 or Q,Nu(t) # 0.

(H3) There exists a constant A > 0 such that if |b|> A or |c|> 4,

then either
bON(bt + ct?) + cO,N(bt + c1?) < 0 (3.4)
or

bON(bt + ct?) + cO,N(bt + ct?) > 0 (3.5)

holds where for b, c € R and B> +c* > A

Then the boundary value problem (1.1)-(1.2) has at least one solution in

U, provided
2+ D) (184 [l +1183llp +[82 1) < 1.
Proof. We divide the proof into four steps:
Step 1. Let

Q ={u € dom L\ker L : Lu = ANu, for A € [0, 1]}.

We will establish that €; is bounded. If u € €, then Lu = ANu # 0,
A # 0 and Nu € Im L. Hence,

QINM = Q2NM =0.
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From (H,), there exist 7y € [0, D] and # € [0, +o0) such that | u'(¢) |
< B, |u"(f))| < B. Let

W (0) = u'(ty) - j;‘) u"(v)dv. Then |/(0)| =

u'(ty) — I(:O u"(v)dv

and
I
|u'(0)] < B + j 0° |u"(v)|dv < B+ D|u"],. (3.6)

Also, from

t t

W(e) = u"(ty) + j W"(v)dv = | u"(t)| = | u(t) + j W"(vV)dv |,

h h

we obtain

+o0
lu"],, < B+ -[0 | Nu(v)|dv|< B+ Nu|. 3.7

From (3.6) and (3.7), we obtain
|u'(0)| < B+ D(B + || Nul|;1) < B(1+ D)+ D| Nu |, (3.8)
while from (3.7), we obtain
|u"(0)| < B+ Nu 1. (3.9)
Therefore,

| Pu || = max{]| Puy. | Pul. | Pul,} < BQ + D)+ (1 + D)| Nu . (3.10)

In addition, for u € Q;, (I — P)u € dom L (\ker P, LPu = 0. Thus,

from Lemma 2.2, we get

17 = Pyull = | KpL(T = PYu] < | LT = Pyt = Zu g < Ne 1. Gu11)
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Hence, from (3.10) and (3.11), we obtain
]| = [ Pre+ (7 = Pyu || < |Pu ||+ (T = P)u |

< B2+ D)+ (1+ D)| Nullp +| Nu
< B2+ D)+ (2+D)| Nu|p
S@2+D)B+|Nufp).

If (3.1) holds, then from (3.12), we obtain

lul <@+ D)(B+[8s | +]84 ]l +]83]p]ul
182 e [+ 180 Il 1)
which implies

2+ D) (|85 [l +]8 []u]®+ B)
1=+ D)(| 84l +133 0 +18210,1)

]l <

79

(3.12)

(3.13)

(3.14)

Since o € [0, 1), there exists a constant By > 0 such that (3.14) becomes

|u| < By. Thus, Q is bounded.

If (3.2) and (3.3) hold, then €); can be shown to be bounded using

similar argument.
Step 2. Let

Q, ={uekerL:NuelmlL}.
Foru, Nu € Q,, then u(t) = bt + ct?> and ONu = 0. Hence
ON(bt + ct?) = Oy N(bt + ct*) = 0.

From (Hj),

b|< A4,

max{24, 24, A} < 24, hence, Q, is bounded.

c[< 4, then [[u = max{|u o, Jull, [ul.,} =
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Step 3. For b,ce R, te[0, +0), we will define the isomorphism
J:kerL - ImQ by

J(bl + Ctz) = é[(mnb + ml2C)t + (leb + mch)tz]e_t. (315)
Suppose (3.4) holds. Let
Qs ={uekerL:Au+(1-L)ONu=0,%c¢€][0,l1]}.

Let u e Q3. Then u(t) = bt + ct®. Since MJu + (I — A)ONu = 0, we
have

{mll(bl + (1= 0)ON(bt + ct?)) + myy(ch + (1 = L) O, N(bt + ct?)) = 0,
my (BL + (1= W)OIN (bt + c1?)) + moyy (ch + (1 = L) Oy N(bt + ct?)) = 0.

In matrix form, we have

(mll m12j(bk +(1-2)QN(bt + ctz)J _ (OJ
my1 myp )\ ch+ (1= 1)O,N(bt +ct*)) \0)
since

d my o mp _ - G20
et = mymyy —mymyp = g22811 + 812821 = -G # U,
mpp My

{bx +(1=0)ON(bt + ct?) = 0 = bh = —(1 = L)ON(bt + ct?),

A+ (1= N)ON(bt + ct2) = 0 = ch = —(1— L) OyN(bt + ct?). 10
From (3.16), we have

bh = —(1 = A)ON(bt + ct?),

k= —(1 =) O, N(bt + ct?). (3.17)

From (3.17), when A =1,b=c=0. When A =0, O\N(bt + ct*) =

O, N(bt + ct?) = 0, which contradicts (3.4) and (3.5). Hence, from (H 3),
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weget |b|< A4 and|c|< A Forhe(0,1),if |b]> A or|c|> 4 by(3.5)
and (3.16), we have

AMB? + ?) = —(1 = L) [BON (bt + ct?) + cO,N(bt + ct*)] < 0,
which contradicts A(a? + b%) > 0. Hence, from (H3), we get |b| < 4 and
|c| < 4, thus, |u|| < |b|+]|c| < 24. Hence, Q3 is bounded.

Suppose (3.4) holds. Let
Qy ={uekerL: Au—-(I-1)QNu=0,xel0,1]},
Q5 can be shown to be bounded using similar argument as above.

Step 4. Let Q o U, i3:1§i~ We will now show that at least one solution of

(1.1) and (1.2) exists in dom L (1 Q. We have shown in Step 1 and Step 2
that

(i) Lu # ANu, ¥(u, 1) € [(dom L\ker L) N 6Q] x [(0, 1)];
(i) Nu ¢ Im L, Yu € ker L () 0Q.
Finally, we show that
(iii) deg(ON |, ;> QN ker L, 0) # 0.
Let uedQNkerL and H(u, A)=1AJu+(1—-A)ONu. By the

arguments of Step 3, H(u, L) # 0, for all (u, 1) € (ker L 0Q) x [0, 1].
Therefore, by the homotopy property,

deg(ON |, 1> QNker L, 0) = deg(H(-, 0), QN ker L, 0)

=deg(H(, 1), QNker L, 0)
=+1=#0.

Therefore, by Theorem 2.2, at least one solution of (1.1)-(1.2) exists in
dom L N Q. O
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4. Example

Example 4.1. Consider the following boundary value problems:

u"(t) = f(t, u@), u'(¢), u"(t)), te(0,+w), 4.1)
, 102, L

u(0) = 0, 4'(0) = -5 Ou@ﬁ+2hu0ﬁm

W (+00) = %.[09 W'(t)dt — J' 02 u"(1)dt, (4.2)

where

(u(?) + sinu'(0))e >, 0<t<2,

f([, u(z‘), u'(t), u”(t)) = {e_zotu,,(t) + e—Zt sin W’ t>2.

Here

1 1
a1=_§,0t2=2,§1=2,§2=1,[31=§v[32=—1,1’11=9an2=2’

Zle ;& = 0§y + gy = —%(2) +2(1) =1,

2 |
Zizlo‘i%iz = &l + apf) = —5(2)2 +2(1)? =0,

2 1
2 o By =B +Bamp =5 0)+ (-D@) =1,
G = 211822 — €21822 = (—0.1047)(-1.8367) — (—0.7926) (-0.2201)
=0.0179 # 0.
Thus condition (¢, ) holds.

(1+2)e 2 0<t<2, 63:{(1”)[152 0<r<2,

85:0,842
0, t>2, 0, t>2,



On the Solvability of a Third-order Integral m-point Resonant ... 83

0, 0<r<2, 0, 02,
6y = 15¢ o = 2t

e ", t>2, e, t>2,
then
2
2 20t 2 20t —-20¢
_ 2y 20t ,, | _20le _tTe _te
84 12 _IO(IH Je Tt { 4000 20 200 L
201 1041 _s9 _
= 2000 4000¢ 00503
850, = | e gy | 2e e 2
30—, - 400 20 |,
—40
= % ——62600 e 40 = 0.0525,
+oo —15¢ [t* -30
1 = e Tdt =- = =2. x107°,
Srlp =], ' = T = 2.0394x10°
2

@+ D) 84 2 + 1831 +13202)

= 4(0.0503 + 0.0525 + 2.0394 x 10_8) =04112 < 1.
Therefore, condition (/) holds.

Let B =243. Then Q;Nu # 0 if |u(t)|> B, for any ¢ [0, 2] and
O,Nu # 0 if |u"(t)| > B, for ¢ € [2, +o0). Hence, (H,) is satisfied.

Lastly, let 4 =32, forany b, c € R, if |b|> 4,|c|> 4, then
aQN(bt + ct*) + bO,N(bt + ct?) > 0.

Hence, (H3) also holds. Since all the conditions of Theorem 2.2 hold,

(4.1)-(4.2) has at least one solution.
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