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Abstract. The purpose of this research is to establish conditions that guarantee the 

solvability  of a resonant third-order boundary value problem (BVP) on the half-line.  

The resonant problem is subject to integral and m-point boundary conditions while, 

the kernel of the differential operator is equal to two. The coincidence degree theory 

will be applied and an illustrative example will be considered to demonstrate the 

result.  

1.  Introduction 

In this work, the Mawhin coincidence degree theory [4] will be used to study the existence of solutions 

for the resonant third-order problem of the form:  

 (( )( )) ( , ( ), ( ), ( )), (0, )b t h t b t b t b t t       (1.1) 

 

0 0
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 +
(0) ( ) , (0) ( ) , lim ( ) ( ) 0

j k
m n

j k
t

j k

b b t dt b b t dt t b t
 

  







        (1.2) 

where 
3

: [0, )h     is a 
1
[0, )L  -Caratheodory 

function,
1 2

0
m

        ,
1 2

0
n

        , , 1,2, ,
j

j m    and 

, 1, 2, ,
k

k n   , ( ) 0t   on [0, )  and 
1

[0, )

  . 

The problem (1.1)-(1.2) is said to be at resonance if the solution of (( )( )) 0u t    subject 

to (1.2) is non-trivial. Though a lot of research has been carried out on resonant multi-point boundary 

value problems,  see  [1,  3, 5-8, 10, 14], only few authors in the literature have considered problems 

on the half-line having integral boundary conditions where the kernel of the differential operator is of 

dimension two, see [2,11].  

2.  Preliminaries 

We are going to state definitions and theorems, then prove lemmas that will be used in this work.  

Taking U , Z  to be normed spaces, :T dom T U Z   a Fredholm mapping of zero index. Also, let 

:A U U  and :B Z Z  be projectors that are continuous such that  

ker , ker , ker ker , .Im A T B Im T U T A Z Im T Im B       

 Then,  
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 is invertible. We denote the inverse of the mapping T  by : ker
A

K Im T dom T A   while the 

generalized inverse,  
,

: ker
A B

K Z dom T A   is defined as 
,

( )
A B A

K K I B  .  

Definition 2.1. [3] If U   is open and bounded and domT     then a mapping :N U Z  is  

L -compact on   if ( )BN Z   is bounded and ( ) :
A

K I B N U   is compact. 

Theorem 2.1.  [4] Let N  be L -compact on    and T  a index zero-Fredholm map, then at least one 

solution of Tb Nb  exists in dom T  , if 

(i) Tb Nb   ( , ) [( ker ] (0,1)b dom T T    , 

(ii) Nb Im T  kerb T   , 

(iii) 
ker

( | , ker ,0) 0
T

deg AN T  , where :B Z Z  is a projection such that kerIm T B . 

Theorem 2.2. [15] Let N V  where V  implies the space of all bounded and continuous functions on 

the interval[0, ) , then N  is relatively compact on V  if: 

(i) N  is a bounded; 

(ii) on any compact interval of [0, ) , every f N  is equicontinuous; 

(iii) every f N  is equiconvergent at  .  

Let 
2 ( )
[0, ) : , , ( ) [0, ), lim | ( ) |  exist, 0,1, 2{ }t i

t

U b C b b b AC e b t i




        

and the norm on U  is max{ , , }b b b b
  

 ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  where 
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i t i
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b e b i



 

 ‖ ‖ . 

 Then, the space ( , )U ‖ ‖  is a Banach Space. 

 Let 
1
[0, )Z L   with the norm 1

0
| ( ) |

L
y y v dv



 ‖ ‖ . 

Also, define ( )Tb b   , with domain 
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      , 

and the operator $N:U \to Z$ be defined as ( ) ( , ( ), ( ), ( )), [0, )Nb t h t b t b t b t t    , hence, 

equations (1.1)-(1.2) in abstract form is Tb Nb .  

 We made the following assumptions: 
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     .  

It is easily seen that ker { : , , [0, )}T a ct a c t     . 

Lemma 2.1. 
1 2

{ : 0}imT y Z B y B y    . 

Proof. Consider 

 ( ( )) , [0, )b t y t      , (2.1) 

integrating (2.1) from   to   gives 
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( ( )) ( )( ) ( )b t b y v dv


 



     . (2.2) 

At t   , ( )( ) 0b    , hence (2.2) becomes 

 

0

1
( ) ( )

( )
b t y v dv



 
   . (2.3) 

Integrating (2.3) with respect to t  from 0  to t  gives 

 

0 0
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     . (2.4) 

Applying boundary condition (1.2) and in view of 
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1
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Integrating (2.4) from 0  to t  gives 
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Applying boundary condition (1.2), and in view of 
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and  

0 0 0

1
( ) ( )

( )

t s

b t a ct y v dvd ds



 

      , 

where ,a c  are arbitrary constants and ( )b t  is a solution to (2.1) satisfying (1.2).  End of proof. 

We next define the operator :B Z Z  as  

1 2
( ) ( )By R y R y t     

where  

1 11 1 12 2 2 21 1 22 2

1 1
( ) , ( )

t t
R y m B y m B y e R y m B y m B y e

W W

 
    , 

and 
ij

m  is the algebraic cofactor of 
ij

w . 

Lemma 2.2. The following conditions hold: 

(i) :T domT U  is a Fredholm operator whose index is zero; 

(ii) the generalized inverse : ker
A

K imT domT A   may be written as   

0 0

1
( )

( )

t s

A
K y y v dvd ds




 



    . 

Also, 

1

1

1 1
,

p L

L

K y y
 




 
 
 

‖ ‖ ‖ ‖ . 

Proof. Prove of (i) is obvious.  

ii) Let a continuous projector :A U U  be defined as 

( )( ) (0) (0) , [0, )Ab t b b t t    . 

Then : ker
A

K imT domT A   may be written as 
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For y imT   we have 

( ) ( ) ( ) ( )
A A

TK y t K y y t


   

and for b dom T ker A  , we have 

0 0

1
( ) ( ) ( ) ( ) ( ( )) ( ) ( )
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x s

A A
K T b t K b t b v dvd ds b t Ab t


 

 



        . 

Since u dom T ker A  , ( ) 0Ab t   then ( ) ( ) ( )
A

K T b t b t . Thus 
1

ker( | )A dom T AK T 

 .. 

Also, it is easily seen that  

1

1

1 1
max{ , ) = ( ) , ( }max ,

A A A A L

L

K y K y K y K y y
 

  



 
 
 
 

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ . 

End of proof of Lemma 2.2. 

Lemma 2.3. Let U   be open and bounded with dom T    . If h  is a 
1

L -Caratheodory 

function, then, the nonlinear operator N  is L  -compact on . 

Proof. Let b  and let 0q   then,  b q‖ ‖  since   is bounded. Since h  is 
1

L -Caratheodory and 

for any b , where [0, )t  , then  

 

 
1 1

0
| ( , ( ), ( ), ( ) |)

qL L
Nb h v b v b v b v dv 



  ‖ ‖ ‖ ‖ . (2.5) 

 

Hence,  

 
1 1 1

2

11 21 12 22

1 1

1 1
(| | | |) | | (| | | |) | |

| |
[ ( ) ( )]

n m

q k k k jL L L
k j

BNb m m m m
W

    
  

    ‖ ‖ ‖ ‖‖ ‖ . (2.6) 

Then, ( )BN   is bounded. We will use the following three steps to prove that ( ) ( )
A

K I B N   is 

compact. 

Step 1: Boundedness. Let b , then 

 

 1 1

1[0, )

1
sup | ( ) ( ) |

t

A q L L
t

L

e K I B Nb t BNb




 

  ‖ ‖ ‖ ‖ , (2.7) 

 

 1 1

1[0, )

1
sup | ( ( ) ) ( ) |

t

A q L L
t

L

e K I B Nb t BNb


 

 

  ‖ ‖ ‖ ‖  (2.8) 

and  

 

 1 1

[0, )

1
sup | ( ( ) ) ( ) |

t

A q L L
t

e K I B Nb t BNb


 

 


  ‖ ‖ ‖ ‖ . (2.9) 

 

From (2.5), (2.6), (2.7), (2.8) and (2.9), we see that ( ) ( )
A

K I B N   is bounded.   

Step 2: Equi-continuity. Let b , 
1 2
, [0, ]t t G  with 

1 2
t t  and (0, )G  , then 

2 1

2 1
( ) ( ) ( ) ( )| |t t

A A
e K I B Nb t e K I B Nb t
 

   , 2 1

2 1
( ( ) ) ( ) ( ( ) ) ( )| |t t

A A
e K I B Nb t e K I B Nb t
  

   , and 

2 1

2 1
| ( ( ) ) ( ) ( ( ) ) ( ) |

t t

A A
e K I B Nb t e K I B Nb t
      

1 2
0 as t t  . 
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Thus,  ( ) ( )
A

K I B Nb   is equi-continuous on the compact set [0, ]G .  

Step 3: Equi-convergence at  . Let b . We have, 

( ) ( ) lim ( ) ( )| |t t

A A
t

e K I B Nb t e K I B Nb t
 



   , ( ( ) ) ( ) lim( ( ) ) ( )| |t

A A
t

e K I B Nb t K I B Nb t
  



    and 

| ( ( ) ) ( ) lim ( ( ) ) ( ) |
t t

A A
t

e K I B Nb t e K I B Nb t
   



    0 as t   

Then,  ( ) ( )
A

K I B Nb   is equi-convergence at  . Thus, ( ) ( )
A

K I B Nb   is compact, therefore, 

the nonlinear operator N  is L -compact on  . 

3.  Existence Result 

Subject to (1.2), the conditions that guarantee the existence of solutions to the present problem (1.1) 

are as follows: 

Theorem 3.1. Suppose  h  is an 
1
[0, )L  - Caratheodory well-defined function. If (

1
 ), (

2
 ) and the 

following hold 

( )] The functions 
1

( ) [0, ), 1,2, ,5
i

t L i      and a constant [0,1)   exist such that for all 

3

1 2 3
( , , )b b b   then 

 
1 2 3 1 1 2 2 3 3 4 3 5

| ( , , , ) [ ( ) | | ( ) | | ( ) | | ( ) | | ( )]
t

h t b b b e t b t b t b t b t


    


     . (3.1) 

( ) The constants 0L    and 
0

0l  exist in such a way  that for b dom T   if | ( ) |b t L   for 

0
[0, ]t l  or | '( ) |b t L  for [0, )t  , then either  

1
( ) 0B Nb t   or 

2
( ) 0b Nb t   

( ) A constant 0D   exist such that if | | 0a   or | |c D  , then either  

 
1 2

( ) ( ) 0B N a ct B N a ct     (3.2) 

or 

 
1 2

( ) ( ) 0B N a ct B N a ct     (3.3) 

 

where ,a c  satisfying | | | |a c D   . 

Then at least one solution of the problem (1.1) and (1.2) exists provided 

1 1 11 2 3
( ) 1

L L L
     ‖ ‖ ‖ ‖ ‖ ‖  

Where 
1 1

0 0

1 1 1
max (2 ) , (1 )

L L

l l
  



    
 
 
 

. 

This was proved using Theorem 2.1. 

4.  Example 

Consider  

 

2

3

0 [0, 2],

(( ( ))
( ) sin ( ) ( ) , (2, ),

20 29 14

t
t t t

t

t

e b t e e e
b t b t e b t t

  





  
       







 (4.1) 

 2 1 3

0 0 0

1 1
(0) ( ) 2 ( ) , (0) ( ) , ( ) 0.

2 3
b b t dt b t dt b b t dt b             (4.2) 
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We have 
0

2l  , 
t

e  , 
1

1

2
   , 

2
2  , 

1
2  , 

2
1  , 

1

1

3
  , 

1
3  ,

2

1

1
j j

j

 


 , 

2
2

1

0
j j

j

 


 , 
1

1

1
k k

k

 


  and 0.0473 0W    . 

Hence, (
1
 ) and (

2
 ) hold. It can be shown that all the conditions of Theorem 3.1 hold, then (4.1)-

(4.2) has at least one solution.  
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