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The stability of a non-classical stochastic evolution equation with impulsive and nonlocal initial conditions is 
examined from a general perspective. We investigate the effect of the nonlocal conditions on the well-posedness 
and the stability of the solution. We show that the concept of Ulam-type stability holds for this class of equation 
under the given condition (1 −𝑀𝐿𝜂𝜉 ) < 1. An example is also provided to support our claim.
1. Introduction

The progression in time of many physical problems is mostly defined 
through a system of differential equations which can also be rewrit-

ten as a Cauchy problem. The interest in studying well-posedness of 
these problems together with the properties of their solution is on the 
increase. One of the major analytical difficulties in the theory of clas-

sical and quantum stochastic differential equations arise whenever the 
coefficients driving the equation also consist of unbounded operators, 
a requirement that is largely unavoidable when dealing with differen-

tial equations. Ulam-Hyers (or Ulam-Hyers-Rissias) stability has been 
used extensively to study stability and has found applications in real life 
problems such as in economics, biology, population dynamics, etc. that 
deal with both linear and nonlinear systems. See [1, 2, 3] and the refer-

ences therein. We consider the following impulsive quantum stochastic 
differential equation introduced by Bishop et al. [4];

𝑑𝜙(𝑡) =𝐴(𝑡)𝜙(𝑡) +𝑈 (𝑡,𝜙(𝑡))𝑑 ∧𝜋 (𝑡) + 𝑉 (𝑡,𝜙(𝑡))𝑑𝐴+
𝑓
(𝑡)

+𝑊 (𝑡,𝜙(𝑡))𝑑𝐴𝑔(𝑡) +𝑍(𝑡,𝜙(𝑡))𝑑𝑡

𝑡 ∈ 𝐼 = [0, 𝑇 ] ⊆ℝ+, 𝑡 ≠ 𝑡𝑘, 𝑘 = 1, ...,𝑚

△𝜙(𝑡𝑘) = 𝐽𝑘(𝜙(𝑡𝑘)), 𝑡 ∈ 𝑡𝑘

𝜙(0) = 𝜙0 − 𝑔(𝜙), 𝑡 ∈ [0, 𝑇 ]. (1.1)

Here 𝐽𝑘 ∈ 𝐶(̃, ̃), 𝐴 is the infinitesimal generator of a family of semi-

group defined in [4] while g is a continuous function.

𝜙(𝑡+
𝑘
) = lim𝜖→0+ 𝜙(𝑡𝑘 + 𝜖) and 𝜙(𝑡−

𝑘
) = lim𝜖→0− 𝜙(𝑡𝑘 + 𝜖) are the right 

and left limits of 𝜙(𝑡) at 𝑡 = 𝑡𝑘 while Δ𝜙(𝑡𝑘) = 𝜙(𝑡+𝑘 ) −𝜙(𝑡
−
𝑘
) is the jump in 
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the state 𝜙 at 𝑡𝑘 and the coefficients 𝑈, 𝑉 , 𝑊 , 𝑍 are stochastic processes 
defined in [4, 5, 6]. Associated with equation (1.1) is the following 
nonclassical stochastic differential equation (NSDE) with impulse effect:

𝑑

𝑑𝑡
⟨𝜂,𝜙(𝑡)𝜉⟩ =𝐴(𝑡)𝜙(𝑡)(𝜂, 𝜉) + 𝑃 (𝑡,𝜙(𝑡))(𝜂, 𝜉), 𝑡 ∈ 𝐼, 𝑡 ≠ 𝑡𝑘, 𝑘 = 1, ...,𝑚

Δ𝜙(𝑡𝑘) = 𝐽𝑘(𝜙(𝑡−𝑘 )), 𝑡 ∈ 𝑡𝑘, 𝑘 = 1, ...,𝑚

𝜙(0) = 𝜙0 − 𝑔(𝜙), 𝑡 ∈ [0, 𝑇 ], (1.2)

where (𝑡, 𝜙) → 𝑃 (𝑡, 𝜙)(𝜂, 𝜉) is a sesquilinear-form valued stochastic pro-

cess well defined in [4]. 𝜂, 𝜉 ∈D⊗E (D is a pre-Hilbert space and E is a 
linear space of exponential vectors). For details of these equations and 
how they are connected, we refer the reader to [4] and the references 
therein. Existence of solution of (1.1) using the equivalent nonclassical 
ordinary differential equation (1.2) with initial condition was first con-

sidered by Ogundiran and Payne [7]. Later Bishop and Oguntunde [6]

considered a weaker form of [7], where the evolution operator 𝐴 = 0. 
In [4], the existence of solution of (1.1) was established with nonlocal 
conditions that are completely continuous. Several results on the quali-

tative and topological properties of solutions of (1.1) with and without 
the impulse effect have been studied [5, 6, 8, 9, 10]. In the case of 
ordinary differential equations (ODEs), functional ordinary differential 
equations (FODEs), etc. with impulse effect, local initial and nonlocal 
initial conditions, so much have been done on the existence of solutions 
and stability of solutions of these types of equations, see [3, 7, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21] and the references therein.

In [7, 21], the authors established Ulam stability of impulsive differ-

ential equations with local and nonlocal initial conditions respectively. 
Ulam-Hyers-Rassias stability was also considered by Liao and Wang 
https://doi.org/10.1016/j.heliyon.2019.e02832
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[15]. Several other studies in literature show the use of this concept of 
stability [3, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recently Ali 
et al. [25] studied Hyers–Ulam type stability of solutions of a coupled 
system of implicit type impulsive boundary value problems of fractional 
ODEs under some strict conditions. Within the context of (1.1), no study 
has been done on Ulam’s type of stability.

We study Ulam, Ulam-Hyers, Ulam-Hyers-Rassias types of stability 
for (1.1). Here the impulsive conditions are combinations of the nonlo-

cal problem and the short term perturbations. We rely on the structure 
of the topological space and additional properties to establish the main 
result.

2. Preliminaries

We state the following definitions and notations of some spaces.

1. ̃ is a topological vector space, where clos(̃) denotes its nonempty 
closed subset.

2. 𝑠𝑒𝑠𝑞(D⊗E) is a complex space of sesquilinear-form valued stochas-

tic processes.

3. PC(𝐼, ̃), 𝑃𝐶1(𝐼, ̃), PC(𝐼, 𝑠𝑒𝑠𝑞(D⊗E)) are Banach spaces with the 
usual supremum norm defined in [2, 12].

Let 𝐼0 = [0, 𝑡1], 𝐼1 = (𝑡1, 𝑡2], ..., 𝐼𝑚 = (𝑡𝑚, 𝑇 ], and 𝐼𝑘 = (𝑡𝑘, 𝑡𝑘+1], where 
𝑘 = 1, ..., 𝑚, 𝑡0 = 0.

Definition 2.1. A stochastic process 𝑧 ∈ 𝑃𝐶(𝐼, ̃) is said to be a solution 
of (1.1) if it satisfies

𝑧(0) = 𝜙0 − 𝑔(𝑧)

Δ𝑧(𝑡𝑘) = 𝐽𝑘(𝑧(𝑡−𝑘 ))

𝑧(𝑡) = 𝑆(𝑡)[𝑧0 − 𝑔(𝑧)] +

𝑡

∫
0

𝑆(𝑡− 𝑠)(𝑈 (𝑠, 𝑧(𝑠))𝑑 ∧𝜋 (𝑠)

+𝑉 (𝑠, 𝑧(𝑠))𝑑𝐴+
𝑓
(𝑠) +𝑊 (𝑠, 𝑧(𝑠))𝑑𝐴𝑔(𝑠) +𝑍(𝑠, 𝑧(𝑠))𝑑𝑠), 𝑡 ∈

[
0, 𝑡1

]
+

∑
0<𝑡𝑘<𝑡

𝑆(𝑡− 𝑠)𝐽𝑘(𝑧(𝑡−𝑘 )), 𝑘 = 1, ...,𝑚. (2.1)

Notation 2.1. Denote Ulam, Ulam-Hyers and Ulam-Hyers-Rassias by U, 
U-H and U-H-R respectively.

Next, we introduce the concept of Ulam stability within the context 
of this paper. We state the following useful inequalities. Let 𝛿 > 0, Ψ ≥ 0
and 𝜑 ∈ 𝑃𝐶(𝐼, ̃) be a non-decreasing function. Then

| 𝑑
𝑑𝑡

⟨𝜂,𝜙(𝑡)𝜉⟩−𝐴(𝑡)𝜙(𝑡)(𝜂, 𝜉) − 𝑃 (𝑡,𝜙(𝑡)(𝜂, 𝜉)| ≤ 𝛿, 𝑡 ≠ 𝑡𝑘|△ 𝜙(𝑡𝑘)(𝜂, 𝜉) − 𝐽𝑘(𝜙(𝑡−𝑘 ))(𝜂, 𝜉) + 𝑔(𝑡)| ≤ 𝛿, 𝑘 = 1, ...,𝑚 (2.2)

| 𝑑
𝑑𝑡

⟨𝜂,𝜙(𝑡)𝜉⟩−𝐴(𝑡)𝜙(𝑡)(𝜂, 𝜉) − 𝑃 (𝑡,𝜙(𝑡)(𝜂, 𝜉)| ≤ 𝜑𝜂𝜉(𝑡)|△ 𝜙(𝑡𝑘)(𝜂, 𝜉) − 𝐽𝑘(𝜙(𝑡−𝑘 ))(𝜂, 𝜉) + 𝑔(𝑡)| ≤Ψ𝜂𝜉 (2.3)

| 𝑑
𝑑𝑡

⟨𝜂,𝜙(𝑡)𝜉⟩−𝐴(𝑡)𝜙(𝑡)(𝜂, 𝜉) − 𝑃 (𝑡,𝜙(𝑡)(𝜂, 𝜉)| ≤ 𝛿𝜑𝜂𝜉(𝑡)|△ 𝜙(𝑡𝑘)(𝜂, 𝜉) − 𝐽𝑘(𝜙(𝑡−𝑘 ))(𝜂, 𝜉) + 𝑔(𝑡)| ≤ 𝛿Ψ𝜂𝜉 . (2.4)

Subsequently, 𝑡 ∈ 𝐼 , 𝜂, 𝜉 ∈ (D⊗E)) and 𝑘 = 1, ..., 𝑚 except otherwise 
stated.

Definition 2.2.

(i) (1.1) is U-H stable if ∃ a real number 𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀 > 0 such that for 
each 𝛿 > 0 and for each solution 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) of (2.2) there exists 
a solution 𝑦 ∈ 𝑃𝐶1(𝐼, ̃) of (1.1) with

||𝜙(𝑡) − 𝑦(𝑡)||𝜂𝜉 ≤ 𝑐𝑝,𝑙 ,𝐿 ,𝑚,𝑀𝛿.
𝑘 𝜂𝜉

2

(ii) (1.1) is generalized U-H stable if ∃ 𝜃𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀
∈ 𝐶(ℝ+, ℝ+),

𝜃𝑝𝑙𝑘 ,𝐿𝜂𝜉 ,𝑀
(0) = 0, so that for a solution 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) of (2.2) we 

obtain

||𝜙(𝑡) − 𝑦(𝑡)||𝜂𝜉 ≤ 𝜃𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀 (𝛿).

(iii) (1.1) is U-H-R stable with respect to (𝜑𝜂𝜉(𝑡), Ψ𝜂𝜉) if we can find 
𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀,𝜑𝜂𝜉

> 0 and a 𝛿 > 0 such that for each solution 𝑦 ∈
𝑃𝐶1(𝐼, ̃) of (2.4) a solution 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) of (1.2) exists with

||𝜙(𝑡) − 𝑦(𝑡)||𝜂𝜉 ≤ 𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀𝛿(𝜑𝜂𝜉)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉 ).

(iv) (1.1) is generalized U-H-R stable with respect to (𝜑𝜂𝜉 , Ψ𝜂𝜉) if 
𝑐𝑃 ,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀,𝜑𝜂𝜉

> 0 exists such that for each solution 𝜙 ∈ 𝑃𝐶1(𝐼, ̃)
of (2.3) we find a solution 𝑦 ∈ 𝑃𝐶1(𝐼, ̃) of (1.1) with

||𝜙(𝑡) − 𝑦(𝑡)||𝜂𝜉 ≤ 𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀,𝜑𝜂𝜉
(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉).

Definition 2.3. Let 𝑞 ∈ 𝑃𝐶(𝐼, ̃) and 𝑞𝑘, 𝑘 = 1, ..., ∞, be a sequence 
which also depends on 𝜂, 𝜉 such that the following holds:

(i) |𝑞(𝑡)| ≤𝑀𝛿, 𝑡 ∈ 𝐼 , and |𝑞𝑘| < 𝛿;
(ii) 𝑑𝜙(𝑡)=𝐴(𝑡)𝜙(𝑡)+𝑈 (𝑡, 𝜙(𝑡))𝑑∧𝜋 (𝑡)+𝑉 (𝑡, 𝜙(𝑡))𝑑𝐴+

𝑓
(𝑡)+𝑊 (𝑡, 𝜙(𝑡))𝑑𝐴𝑔(𝑡) +

𝑍(𝑡, 𝜙(𝑡))𝑑𝑡 + 𝑞(𝑡), 𝑡 ∈ 𝐼 ′, 𝐼 ′ = 𝐼 ⧵
[
𝑡, 𝑡𝑚

]
;

(iii) Δ𝜙(𝑡𝑘) = 𝐽𝑘(𝜙(𝑡−𝑘 )) + 𝑞𝑘.
Then 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) is a solution of (2.2).

Similar definitions can be obtained for (2.3) and (2.4).

By Definition 2.1, if 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) is a solution of inequality (2.2), 
then 𝜙 is a solution of the following:

||𝜙(𝑡)||𝜂𝜉 − ||𝑆(𝑡− 𝑠) [𝜙0 − 𝑔(𝜙)
]

+

𝑡

∫
0

𝑆(𝑡− 𝑠)(𝑃 (𝑠,𝜙(𝑠))𝑑𝑠+
𝑘∑
𝑖=𝑗

𝐽𝑖(𝜙(𝑡−𝑗 )))||𝜂𝜉
≤𝑀(𝑚+ 𝑡)𝛿. (2.5)

So that by Definition 2.3 (ii)-(iii), we obtain

||𝜙(𝑡)||𝜂𝜉 = ||𝑆(𝑡− 𝑠) [𝜙0 − 𝑔(𝜙)
]
+

𝑡

∫
0

𝑆(𝑡− 𝑠)(𝑃 (𝑠,𝜙(𝑠))𝑑𝑠+

𝑡

∫
0

𝑞(𝑠)𝑑𝑠

+
𝑘∑
𝑖=𝑗

𝐽𝑖(𝜙(𝑡−𝑗 )) +
𝑘∑
𝑗=1

𝑞𝑗 )||𝜂𝜉 , 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1],

from which we get

||𝜙(𝑡) −𝑆(𝑡− 𝑠) [𝜙0 − 𝑔(𝜙)
]
+

𝑡

∫
0

𝑆(𝑡− 𝑠)𝑃 (𝑠,𝜙(𝑠))𝑑𝑠+
𝑘∑
𝑗=1

𝐽𝑗 (𝜙(𝑡𝑗 ))||𝜂𝜉
≤𝑀

𝑚∑
𝑗=1

|𝑞𝑗 |+𝑀
𝑡

∫
0

|𝑞(𝑠)|𝑑𝑠
≤𝑀𝑚𝛿 +𝑀𝑡𝛿 =𝑀(𝑚+ 𝑡)𝛿.

Repeating the process for (2.3) and (2.4), we obtain similar results with 
respect to 𝜑𝜂𝜉(𝑡) and Ψ𝜂𝜉 .

3. Main results

The following assumptions will be used to establish the main results:

Let 𝐾𝜂𝜉 , 𝑙𝑘, 𝑀 , and 𝐿𝜂𝜉 be positive constants.

𝐴1. If (𝑡, 𝜙) → 𝑃 (𝑡, 𝑥)(𝜂, 𝜉) is continuous, for 𝜙, 𝑦 ∈ ̃ we get

||𝑃 (𝑡,𝜙) − 𝑃 (𝑡, 𝑦)||𝜂𝜉 ≤𝐾𝑃 ||𝜙− 𝑦||𝜂𝜉 .
𝜂𝜉
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𝐴2. For 𝐽𝑘 ∶ ̃→ ̃, we have

||𝐽𝑘(𝜙) − 𝐽𝑘(𝑦)||𝜂𝜉 ≤ 𝑙𝑘||𝜙− 𝑦||𝜂𝜉 ,𝜙 ∈ ̃.
𝐴3. Let 𝑡 ≥ 0, then ||𝑆(𝑡)||𝜂𝜉 ≤𝑀 .

𝐴4. For 𝑔 ∶ ̃→ 𝑃𝐶(𝐼, 𝑠𝑒𝑠𝑞(D⊗E)) we obtain

||𝑔(𝜙) − 𝑔(𝑦)||𝜂𝜉 ≤𝐿𝜂𝜉 ||𝜙− 𝑦||𝜂𝜉 , 𝜙, 𝑦 ∈ ̃.
𝐴5. For each 𝑡 ∈ 𝐼 , let the function 𝜑𝜂𝜉 ∈ 𝐶(𝐼, ℝ+) be non decreasing. 

Then

𝑡

∫
0

𝜑𝜂𝜉(𝑠)𝑑𝑠 ≤ 𝑐𝜑𝜑(𝑡), 𝑐𝜑 > 0.

Theorem 3.1. Let the conditions 𝐴1 − 𝐴5, and 𝐻4 in [4] be satisfied. 
Then (1.2) respectively (1.1) is generalized U-H-R stable with respect to 
(𝜑𝜂𝜉(𝑡), Ψ𝜂𝜉) provided (1 −𝑀𝐿𝜂𝜉) < 1.

Proof. Let 𝜙 ∈ 𝑃𝐶1(𝐼, ̃) be a solution of (2.3) and 𝑦 a unique solution 
of (1.1) where 𝜙(0) = 𝑦(0) and 𝜙0 = 𝑦0. Then we obtain

𝜙(𝑡) = 𝑆(𝑡− 𝑠) [𝑦(0) + 𝑔(𝜙)] +

𝑡

∫
0

𝑆(𝑡− 𝑠)[𝑈 (𝑠,𝜙(𝑠))𝑑 ∧𝜋 (𝑠)

+𝑉 (𝑠,𝜙(𝑠)𝑑𝐴+
𝑓
(𝑠) +𝑊 (𝑠,𝜙(𝑠))𝑑𝐴𝑔(𝑠) +𝑍(𝑠,𝜙(𝑠))𝑑𝑠], 𝑡 ∈ (0, 𝑡1],

= 𝑆(𝑡− 𝑠)([𝑦(0) + 𝑔(𝜙)] + 𝐽1(𝜙(𝑡−1 ))) +

𝑡

∫
0

𝑆(𝑡− 𝑠)[𝑈 (𝑠,𝜙(𝑠))𝑑 ∧𝜋 (𝑠)

+𝑉 (𝑠,𝜙(𝑠)𝑑𝐴+
𝑓
(𝑠) +𝑊 (𝑠,𝜙(𝑠))𝑑𝐴𝑔(𝑠) +𝑍(𝑠,𝜙(𝑠))𝑑𝑠], 𝑡 ∈ (𝑡1, 𝑡2],

= 𝑆(𝑡− 𝑠)([(𝑦(0) + 𝑔(𝜙)] + 𝐽1(𝜙(𝑡−1 )) + 𝐽2(𝜙(𝑡
−
2 )))

+

𝑡

∫
0

𝑆(𝑡− 𝑠)[𝑈 (𝑠,𝜙(𝑠))𝑑 ∧𝜋 (𝑠) + 𝑉 (𝑠,𝜙(𝑠))𝑑𝐴+
𝑓
(𝑠)

+𝑊 (𝑠,𝜙(𝑠))𝑑𝐴𝑔(𝑠) +𝑍(𝑠,𝜙(𝑠))𝑑𝑠], 𝑡 ∈ (𝑡2, 𝑡3],

.

.

.

= 𝑆(𝑡− 𝑠)([𝑦(0) + 𝑔(𝜙)) +
𝑚∑
𝑘=1

𝐽𝑘(𝜙(𝑡𝑘)))

+

𝑡

∫
0

𝑆(𝑡− 𝑠)[𝑈 (𝑠,𝜙(𝑠))𝑑 ∧𝜋 (𝑠) + 𝑉 (𝑠,𝜙(𝑠))𝑑𝐴+
𝑓
(𝑠)

+𝑊 (𝑠,𝜙(𝑠))𝑑𝐴𝑔(𝑠) +𝑍(𝑠,𝜙(𝑠))𝑑𝑠], 𝑡 ∈ (𝑡𝑚, 𝑇 ].

Similarly, by definition (2.1), we obtain for each 𝑡 ∈
(
𝑡𝑘, 𝑡𝑘+1

]
,

||𝑦(𝑡)||𝜂𝜉 − ||𝑆(𝑡− 𝑠) [𝑦(0) + 𝑔(𝜙)] − 𝑘∑
𝑗=1

𝑆(𝑡− 𝑠)𝐽𝑗 (𝑦(𝑡−𝑗 ))||𝜂𝜉
−|| 𝑡

∫
0

𝑆(𝑡− 𝑠)𝑃 (𝑠, 𝑦(𝑠))𝑑𝑠||𝜂𝜉
≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉), 𝑡 ∈ 𝐼.

Therefore, for each 𝑡 ∈
(
𝑡𝑘, 𝑡𝑘+1

]
, we get the following:

||𝑦(𝑡) − 𝜙(𝑡)||𝜂𝜉 ≤ ||𝑦(𝑡) −𝑆(𝑡− 𝑠)[(𝑦(0) − 𝑘∑
𝑗=1

𝐽𝑗 (𝑦(𝑡𝑗 )) −

𝑡

∫
0

𝑃 (𝑠,𝜙(𝑠))𝑑𝑠]||𝜂𝜉
+

𝑘∑
𝑗=1

𝑆(𝑡− 𝑠)||𝐽𝑗 (𝜙(𝑡𝑗 )) − 𝐽𝑗 (𝑦(𝑡𝑗 ))||𝜂𝜉
+𝑆(𝑡− 𝑠)[||𝑔(𝜙) − 𝑔(𝑦)||𝜂𝜉
3

+

𝑡

∫
0

||𝑃 (𝑠,𝜙(𝑠)) − 𝑃 (𝑠, 𝑦(𝑠))||𝜂𝜉𝑑𝑠]
≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉 ) +𝑀

𝑘∑
𝑗=1

𝑙𝑗 ||𝜙(𝑡𝑗 ) − 𝑦(𝑡𝑗 )||𝜂𝜉
+𝑀𝐿𝜂𝜉 ||𝜙(𝑡) − 𝑦(𝑡)||𝜂𝜉 +𝑀

𝑡

∫
0

𝐾𝜂𝜉 ||𝜙(𝑠) − 𝑦(𝑠)||𝜂𝜉𝑑𝑠.
(3.1)

Case 1: When 𝐾𝑃
𝜂𝜉
(𝑡) is a function.

Since the map 𝑠 → ||𝜙1 − 𝜙0||𝜂𝜉 is continuous for 𝜙 ∈ ̃, 𝑡 ∈ [𝑡0, 𝑇 ], 
we let

𝑅𝜂𝜉 = sup
𝑡∈[0,𝑇 ]

||𝜙1 −𝜙0||𝜂𝜉
and

𝑁𝜂𝜉(𝑡) =

𝑡

∫
0

𝐾𝑃
𝜂𝜉
(𝑠)𝑑𝑠.

Hence, from (3.1), we obtain

||𝑦(𝑡) − 𝜙(𝑡)||𝜂𝜉 ≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉)

+𝑀
𝑘∑
𝑗=1

𝑙𝑗 ||𝜙(𝑡𝑗 ) − 𝑦(𝑡𝑗 )||𝜂𝜉
+𝑀𝐿𝜂𝜉𝑅𝜂𝜉 +𝑀𝑅𝜂𝜉𝑁𝜂𝜉(𝑡)

≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉 )

+𝑀𝑐𝑘𝑅𝜂𝜉 +𝑀𝑅𝜂𝜉[𝐿𝜂𝜉 +𝑁𝜂𝜉(𝑡)]

≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉 ) +𝑀
𝑘∑
𝑗=1

𝑙𝑗 ||𝜙(𝑡𝑗 ) − 𝑦(𝑡𝑗 )||𝜂𝜉
+𝑀𝑅𝜂𝜉[𝐿𝜂𝜉 +𝑁𝜂𝜉(𝑡)].

Obviously, Lemma 2.1 in [23] cannot be applied directly in this case. 
For more on the Lipschitz function 𝐾𝑝

𝜂𝜉
(𝑡), see the references [4, 5, 6, 7, 

8].

Case 2: When 𝐾𝑝

𝜂𝜉
> 0 is a constant independent of t.

Again, subtracting 𝑀𝐿𝜂𝜉 ∥ 𝜙(𝑡) − 𝑦(𝑡) ∥𝜂𝜉 from both sides of (3.1)

yields:

(1 −𝑀𝐿𝜂𝜉) ∥ 𝜙(𝑡) − 𝑦(𝑡) ∥𝜂𝜉 ≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉)

+𝑀𝐾𝜂𝜉

𝑡

∫
0

∥ 𝜙(𝑠) − 𝑦(𝑠) ∥𝜂𝜉 𝑑𝑠

+𝑀
𝑘∑
𝑗=1

𝑙𝑗 ∥ 𝜙(𝑡𝑗 ) − 𝑦(𝑡𝑗 ) ∥𝜂𝜉 .

By applying Lemma 2.1 in [23], we obtain

∥ 𝜙(𝑡) − 𝑦(𝑡) ∥𝜂𝜉≤𝑀(𝑚+ 𝑐𝜑)(𝜑𝜂𝜉 (𝑡) + Ψ𝜂𝜉 )

( ∏
0<𝑡𝑘<𝑡

(1 + 𝑙𝑘)𝑒
𝐾𝑃
𝜂𝜉
𝑡

)

≤ 𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀,𝜑𝜂𝜉
(𝜑𝜂𝜉(𝑡) + Ψ𝜂𝜉 ), 𝑡 ∈ 𝐼,

where 𝑐𝑝,𝑙𝑘,𝐿𝜂𝜉 ,𝑚,𝑀,𝜑𝜂𝜉
∶=𝑀(𝑚+ 𝑐𝜑)

𝑚∏
𝑘=1

(1 + 𝑙𝑘)𝑒
𝐾𝑃
𝜂𝜉
𝑇
> 0 (3.2)

and (1 −𝑀𝐿𝜂𝜉) < 1. This completes the proof.
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4. Example

Let

𝑃 (𝑡,𝜙(𝑡))(𝜂, 𝜉) = (−1
2
𝜙(𝑡))(𝜂, 𝜉), 𝑡 ∈ 𝐼 = [0,1], (4.1)

and

𝐴𝜙(𝑡)(𝜂, 𝜉) = 𝜙(𝑡)(𝜂, 𝜉), 𝑡 ∈ [0,1]. (4.2)

Also Let

‖𝑆(𝑡)‖𝜂𝜉 ≤ 1 =𝑀,𝑡 ≥ 0, (4.3)

𝜙(0) + 𝑔(𝜙) = 𝜙(0) +
𝑛∑
𝑖=1

𝜅𝑖𝜙(𝑡𝑖) = 1, (4.4)

where 0 < 𝑡1 < 𝑡2 < ... < 𝑡𝑛 < 1, 𝜅𝑖 > 0, 𝑖 = 1, ..., 𝑛 > 0, 𝑚 = 1, 𝑡1 = 1∕2 and set ∑𝑛

𝑖=1 𝜅𝑖 ≤ 1∕3.

Set

Δ𝜙(𝑡1) = 𝐽1(𝜙(𝑡𝑖)) = 𝑐𝜙(
1
2

−
),

and

⟨𝜂,𝜙(0)𝜉⟩ = ⟨𝜂, 𝜉⟩ = 𝑒⟨𝜂,𝜉⟩ = 1.

Then we can have the following nonclassical evolution problem:

𝑑

𝑑𝑡
⟨𝜂,𝜙(𝑡)𝜉⟩ = 𝜙(𝑡)(𝜂, 𝜉) + (−1

2
𝜙(𝑡))(𝜂,𝜙𝜉), 𝑡 ∈ [0,1], 𝑡 ≠ 1

2
,

Δ𝜙(𝑡𝑘) = 𝑐𝜙(
1
2

−
), 𝑡 ∈ [0,1]

𝜙0 = 𝜙(0) +
𝑛∑
𝑖=1

𝜅𝑖𝜙(𝑡𝑖) = 1. (4.5)

We state that hypothesis 𝐻4 in [4] guarantees existence of solution of 
(4.5). Obviously, the map 𝑃 defined by (4.1) is continuous and hence, 
𝐴1 holds. By setting 𝑐𝜑 = 1∕2, 𝐴2 holds with 𝑙𝑘 = 1∕2. Also 𝐴3 holds by 
(4.3) and 𝐴4 holds by (4.4) so that 𝐿𝜂𝜉 = 1∕3.

For 𝐴5, assume that 𝜑𝜂𝜉(𝑡) = 𝑒2𝑡 and Ψ𝜂𝜉 = 1. Then, if 𝑐𝜑 = 1
2 , we get 

the required result, where 𝐾𝑃
𝜂𝜉

= 1
2 . Thus 𝐴5 holds. Also the claim that 

(1 −𝑀𝐿𝜂𝜉) < 1, holds. That is (1 −𝑀𝐿𝜂𝜉) =
2
3 < 1.

Lastly, we obtain ‖𝜙(𝑡) − 𝑦(𝑡)‖𝜂𝜉 ≤ 9∕4(𝑒2𝑡 + 1)𝑒
1
2 𝑡 by (3.2) and by 

setting ⟨𝜂, 𝜉⟩ = 𝑒⟨𝜂,𝜉⟩ = 1. Thus, from Theorem 3.1, it follows that the 
problem (4.5) is generalized U-H-R stable with respect to (𝑒2𝑡, 1).

5. Conclusion

The Ulam-Hyers stability considered here involves a function say 𝑦(𝑡)
which can closely solve (1.2) provided one can find an exact solution 
𝜙(𝑡) of the given equation which is close to 𝑦(𝑡). Hence, by Definition 2.2

(i), (1.2) is U-H stable if it has an exact solution and if there is a 𝛿 > 0
such that if 𝜙(𝑡)𝑎 is an approximation for the solution of (1.2) then there 
is an exact solution 𝜙(𝑡) of (1.2) which is close to 𝜙. This means that in 
application, if one is studying stability problem of this type, one does 
not have to attain the exact solution (which is quite difficult in this 
case). What is required is to obtain a function which satisfies Defini-

tion 2.2 and U-H stability guarantees that there is a solution close to 
the exact solution. This is quite useful in many applications, e.g. nu-

merical analysis, optimization, biology, economics, etc., where finding 
the exact solution is quite difficult. It also helps, if the stochastic ef-

fects are small, to use deterministic model to approximate a stochastic 
one. It is pertinent to note that U-H stability considered here is inde-

pendent of the conversant Lyapunov stability which states that (1.2) is 
Lyapunov stable if both 𝜙(𝑡) and 𝑦(𝑡) are exact solutions of (1.2), see [1, 
2, 3] and the references therein. This explanation can be repeated for 
U-H-R stability and the result follows for the Generalized U-H-R stabil-

ity by using (ii)-(iii) in Definition 2.2 and inequality (2.3). This implies 
that (1.2) is generalized U-H-R stable with respect to (𝜑𝜂𝜉, Ψ𝜂𝜉) provided 
(1 −𝑀𝐿𝜂𝜉) < 1 and 𝐾𝑃 (Lipschitz function) is a constant.
𝜂𝜉
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