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Abstract. This paper aims at deriving apriori bounds on the gradient of positve
solutions to a class of semilinear elliptic equation, with applications focusing on
establishing a liouville type property for the bounded solutions of the Allen-Cahn
equation on a complete noncompact Riemannian manifold with nonnegative Ricci
curvature.

1. Introduction

The Allen—Cahn equation is a mathematical physics reaction-diffusion equation that
explains the steps of phase separation in multicomponent alloy systems, encompassing
order-disorder transitions. The equation represents the time evolution of a scalar-valued
state variable on a specific domain during such time intervals. The Allen-Cahn equa-
tion is a semilinear PDE with a singular limit that is intimately related to the theory
of minimal hypersurfaces. A powerful form of the multiplicity one hypothesis and the
index lower bound conjecture of Marques-Neves in 3-dimensions about min-max con-
structions of minimum surfaces in the Allen-Cahn context.

Bounded positive solutions to some semilinear elliptic partial differential equations
are considered in this paper. This class of equations arises naturally as a model of
problems coming from differential geometry and even mathematical physics. Indeed,
the model to be considered reads in general as

Aw —g(w) =0 in M, (1.1)
where M is a complete Riemmannian manifold of dimension m > 2 with Ricci

curvature tensor simply bounded from below. Here A is the Laplacian on M, which
is a second order partial differential operator intrinsically defined with respect to the
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Riemannian metric, the function g is a first order derivative of another function G
satisfying the properties that G : R — R is a smooth, real, nonnegative function and
G(s) = 0 only in a discrete set of s € R. Typical examples of this class of equations
include the cases (i). g(w) = w® — w for which G(w) is an equal double well function
G(w) = 1/4(1 — w?)?, (ii). g(w) = *sinw for which G(w) = Fcosw and a more
general case (iii). g = w? — wP, ¢ > p > 1. The mathematicians’ interests in any of
these cases are on problems concerning local and global apriori estimates on bounded
solutions, Liouville type properties of entire bounded solutions, symmetry properties,
asymptotic behaviour of solutions and so on. More specifically in the present paper,
apriori gradient estimates are obtained on the bounded positive solutions to (1.1) with
g(w) defined as
g(w) =bw! —aw?, a,b>0, qg>p>1,

and then recover Liouville type properties for these solutions. Particular applications
will be discussed for the case

g(w) = w’ —w,
that is, the elliptic Allen-Chan equation having bounded solutions 0 < w(y) < 1 on a
complete noncompact Riemannian manifold.

It is worthy mentioning that the entire solution of Allen-Cahn equation and its
connection with minimal surfaces theory and Bernstein conjecture [10] motivated the
popular De Giorgi conjecture [16], which states that an entire solution w is one
dimensional if it is monotone in one direction.

De Giorgi Conjecture(/16]): Let w be an entire solution to Aw(y)+w(y)—w?(y) =0
in R™ satisfying |w(y)| < 1, a%]n >0 fory = (v, ym) € R™. Then the level sets of w,
i.e, the sets {w =t,V t € R} are hyperplanes provided m < 8 atleast.

This conjecture has been proved for m = 2 [21], m = 3 [§], 4 < m < 8 (with additional
condition) [30] and counterexamples constructed [17] for the case m > 9. Allen-Cahn
equation (theory and applications) is well studied in literature, see [13, 18, 20, 24]
for examples. It originally arose from the theory of phase separation in iron alloys,
including order-disorder transitions [7] while its connection with the theory of minimal
hypersurfaces has been greatly epxloited by several authors, see [14, 19, 24] and
references therein for instance.

The main goal of the present paper is to prove apriori gradient estimates on bounded
positive solutions to a specific class of (1.1) and obtain condition(s) under which the
gradient estimate will give rise to a Liouville type result in the case g(w) = w® —w with
bounded solutions. By the classical Liouville theorem it is known that any bounded
positive solution must be a constant. The results of this paper reiterate further
the usefulness of gradient estimates in the analysis of partial differential equations.
Gradient estimate was pioneered by [33] (see also [15]). See [11, 22, 25, 26, 32, 34] for
the development of the concept on manifolds. Other useful references on solution
methods, improvements, extensions and applications of gradient estimates include
[1,2,3,4,5, 6,27, 28, 29].

Recently, the authors in [9] and [23] have respectively considered Harnack and
gradient estimates on parabolic and elliptic Allen-Cahn equations and obtained
interesting results. The line of approach in this paper is different from those in [9] and
[23], though our results can be compared with that of [23]. The adopted methodology
towards obtaining the gradient estimate in this paper follows closely the program
introduced by Brighton [11] where the classical Bochner formula will be applied to the
power of solution in contrast to Yau’s idea [33] of using logarithm of positive solution
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to derive some initial inequality. The classical Bochner formula [31] states that
1
5A(\vm?) = |V?h|2 + (Vh, VAR) + Ric(Vh, Vh) (1.2)

for smooth function h on M. The Hessian term in the Bochner formula which is
controlled by the Laplacian, (i.e., |[V2h[> > L(Ah)?), gives rise to some nonlinear
terms due to the nonlinear source in (2.1), and when squared the cross term must be
controlled by choosing a suitable function of the solution, while the two cases must
be examined so as to obtain the desired inequality. The obtained inequality is then
multiplied by a smooth cut-off function having 'nice’ properties, and then subjected to
Laplacian comparison theorem and the maximum principle.

2. Statement of Results and a basic Lemma
Here we consider a more general semilinear equation

Aw + aw? —bw?! =0, ye M, (2.1)

where a, b are nonnegative constants and ¢ > p > 1. In the sequel, M represents a m-
dimensional complete Riemannian manifold (m > 2). For a fixed point £ € M, B¢(2R)
denotes a geodesic ball centered at ¢ with radius 2R, R > 1. The Ricci tensor of M
is denoted by Ric(M) or by Ric(B¢(2R)) when restricted to B¢(2R). Supposing that
solutions to (2.1) satisfy 0 < w < D for some constant D and scaling w — w := w/D,
then 0 < w <1 and w satisfies

Aw + Aw? — Buw? =0

with A = aD9! and B = dDP~!. Due to this, the assumption that 0 < w < 1 in in
order and perfectly fits into the application to Allen Cahn equation (p =1,¢ =3,A =
1 and B = 1) that we have in mind.

With the notations: Dy :=infp (o) w and Dy := sup w, the main results of this
Be(2R)
paper can be stated as follows.

2.1. Main results
Theorem 2.1. Let w(y) be a bounded positive solution to (2.1) in Bg(2R) with
Ric(B¢(2R)) > —(m — 1)k(2R) for some k(2R) > 0. Then the following estimate
holds in Be(2R)

Initial conditions of the model 7?7 variables are given as follows:

S(0) >0, V(0) >0, I(0) >0, T(0) >0, R(0) >0, P(0)> 0. (2.2)

V() <em(D2)?( |(m = 1)k = [b(8+q — 1)}DI
+[a(8+p ~ VIS | + W(m, .k, 01,62)),

where

U(m, R, k, 01, 0) — % [(m — 1)V/BI(+ RVR) + 62 + (m + 2)61]

01 and Oy are positive constants and ¢y, 1S a positive constant depending only on m.
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The following global estimate immediately follows by passing to the limit as R is
sent to infinity.

Corollary 2.2. Let w(y) be a bounded positive solution to (2.1) in noncompact M with
Ric(M) > —(m — 1)k for some k > 0. Then the following estimate holds:

V)l < enD3([(m =1k — b8 +g - )DI +[a(B+p-1D5]).  (24)

where D1 :=inf oy w and Dy := sup, w and cp, is the same as in Theorem 2.1.

Remark 2.3. If a =0 =">bin (2.1), then the estimate in (2.3) of Theorem 2.1 reads

[Vw| < sup {w},/cl—’;n + o m K-
B¢ (2R) R

Note that the last estimate is a replica of the classical Yau gradient estimate [33] for
bounded harmonic function on B¢(R) with Ric > —mk, £ > 0.

However, we recover the following apriori gradient estimate on any bounded solution
to the Allen-Cahn equation and consequently the desired Liouville property.

Theorem 2.4. Let w(y) be a bounded solution to
Aw(y) +w(y) —w’(y) =0 in M

satisfying 0 < w(y) < 1, where M is a complete noncompact Riemannian manifold of
dimension m > 2 with Ric(M) > —(m — 1)k, k > 0. Then for € (0,1)

V| < cm\/(m — D+ B(1 —infu?). (2.5)

Moreover, if Ric(M) > 0, then w is a constant and identically equal to 1.

Lastly in this section, a basic lemma that is essential to the proof of Theorem 2.1 is
presented.

2.2. Basic Lemma
Define G = w?®, where 3 € (0,1) will be chosen later. Note that by direct computation

IVG]? _ 2 |Vuwl®
T gl

G w?
and
—-1 2 p=1 =1
AG = BZINGE g aerst | gt (2.6)
s G
Using the Bochner formula (1.2) on G together with the inequality [V2G|> > L (AG)?
and the Ricci tensor condition Ric > —(m — 1)k, we have
1 1
5A(WGF) > E(AG)2 + (VG,VAG) — (m — 1)k|VG|*. (2.7)
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The first two terms in the RHS of (2.7) can be expressed as follows using (2.6):

+ %(55@”‘% _ BGGHL;)? (2.8)
and
(VG,VAG) = BBWC?V(\VGW - ;1 lvcgl‘l B

+ b5 +a- DG'F —a(B+p— 1)G”T”} VG2,
Substituting (2.8) and (2.9) into (2.7) gives
2 < 2(6-1) |[VG? 1+t 1+224 (6-1)* B-1\|VG*
S AVEP) = SO R (B 5 — gaG™ 5 ) + ( " )
8—1VG

1 g—1 p—1
+ —(ﬁbG” 7 — BaGF ) + 5 v(vGP)

= [m=Dr=b(B+a-1)GT +a(B+p-1GT ||VGPE.

(2.10)
There is a need to control the first term in the RHS of (2.10). Indeed, two cases arise:
Case 1: If for any fixed point ¢ in B¢(2R) there exists a positive constant A such that

-1 -1
BYG T — G T < AYEE Then

2(8-1) [VGP
mp G

since § € (0,1), and (2.10) will then imply

2(8 - 1) IVGIQ(AIVGP)

<ﬂbGl+% _BQGH%I) Y B G

28— 1) VG (,IVGPY | ((B-1> §—1y|VG*
SA(VGP) = (mﬁ ) G| (A| G| >+<(m52) B >|G2|
1 q—1 p—1 2 —1VG
+E(,36G1+ 7 — BaGT ﬁ) +’8ﬁGV(!VG|2)

— =Dk —b(B+q-1)G'T +a(B+p-1GT|IVGP.
Case 2: In contrast to Case 1 if ﬁbGH% — BaGHLEI > )\% at the point J in
B¢(2R). Then

2(8-1)|VG|?
mp G

and (2.10) implies

2([3_1)1 1_;,_& 1_,'_& 2
B X(ﬁbG B — BaG 5)

(ﬁbG” /jaa“’%l) >

—1)2 -1\ |[VG|* -1VG
(U5 D) (47 <)

— [m=Dr=b(B+q-1)GT +a(B+p-1ET ||VGPE.
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Given that 2 e ; ) +-L >0, then in the two cases described, (2.10) yields the following
inequality

-1 -1 2X(B-1\|VG* pB—-1VG

— [m=Dr=b(B+4-1GT +a(B+p-1)GT | VG,

V(IVGP)

By this we have summarized the proof of the below given Lemma.

Lemma 2.5. Suppose M is a complete Riemannian manifold of dimension m > 2. Let
w(y) be a positive solution to (1.1) in Bg(2R) with Ric(B¢(2R)) > —(m — 1)K,k > 0.
For a function G = w®, B € (0,1), then there exists a positive constant \ satisfying

1 2(5-1)

— 4+ > 2.11
m+ mBA =0 ( )

such that

1 2 B—1VG B-1 B-1_2X(8-1)IVG)
g2V 2 TG VINe s (=5 s ) e

(m =1k —bB+q—1)GF +a(B+p— 1)G’”ﬂ VG|

—

holds on B¢(2R).

3. Proof of results

Gradient estimates and Liouville type theorem

3.1. Proof of Theorem 2.1

The estimate (2.12) of Lemma 2.5 will be multiplied by a cut-off function, then the
maximum principle combined with Laplacian comparlson theorem will be applied. First

choose A in (2.12) such that the coefficient of | GQ‘ is positive. Since 0 < f < 1 and
A > 0, we can choose 3 = — and letting A — %2 so that (2.11) holds and (2.12)

+4
becomes

m |[VG[! ~mVG 2y _ 2
SANVEP) = TR = T2V (VG 0. VG, (3.1)

where

=(m—1)k — — inf {w?™? a — sup {wi 1.
U= (m— 1)k — [b(B+q 1)]35(2%2){ }+la(B+p 1)]13&(2%){ }

Now define a smooth cut-off function o in [0, +00) such that o(s) =1 for s € [0, R],
o(s) =0 for s € 2R, +00) and o(s) € [0,1] with the properties

0>a **> —v/#; and o” ) > —06

for some constants 61,6, > 0. For a fixed point £ € M, denote by d(&,y) the distance
function between £ and y in M. Let
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By Calabi’s trick [12] we assume that 7 is smoothly supported in B¢(2R) and clearly
by the Laplacian comparison theorem [31] we obtain

|Vn|? (m —1)v/01(1 + R\/k) + 0y
p; <R— and An>— 2 .

Setting H = n|VG|?. We suppose G reaches its maximum at yo € B¢(2R) with
emphasis that yo is not in the cut locus of £ and assumption that G(yo) > 0. Then at
40, it holds that VH = 0 which implies

Vi
V(IVGP) = *7|VGI2, (3-2)
and AH < 0. Thus by (3.2)

0> AH = nA(|[VG|?) + |VG*An + 2VnV(IVG|?)

AIVGP) + (A 2|V’7|2)Z. (3:3)

Combinning (3.1) with (3.3) using the definition H = n|VG|? we have

m H?> mVGVn |Vn2\ H
> A VTV 99.H+ (A —2 =
0= 8nG* 2 G 1 v +( g n )77

Multiplying both sides of the last inequality by 74 leads to

mH< m VG

[V
s S~ Y+ 20, (An 2 ) (3.4)

n
Clearly for u € (0, 1), the Cauchy-Schwarz inequality implies

m VG m |VG|
<

2 G "—2G|V‘

m Vo2 |G m Vo2 | H (35
4 4 G? n_4u n 4G
Putting (3.5) into (3.4) we have
(1-2)m H m +8u)\ [V
s s 2= (80— m ) ” ) (36)
In particular we choose = 1 in (3.6) and obtain
H
%? 20,m + U, (3.7)

where

m — 1)\/07(1+Rf)+02 (m +2)0;
R? R?

Therefore for y € By, (2R), R > 1, it follows from (3.7) that

U = (01, 0o, i, ) = &

16H( y) < T6H(y0) < G*(y0) (20, + ).
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Finally, using the definition G = w®, 0 < 8 < 1 and H = 5|VG/|? we find
a2 2| Vu|?
H=nr G =

so that

[Vw(y)?
w?(y)

where ¢, 3 > 0 is a constant which depends on 8 and m. The expected estimate
therefore follows at once.

< Cm”3(219,{ + \I/),

O]

3.2. Proof of Corollary 2.2
We note that ¥ in (2.3) vanishes by letting R — +o00. Therefore we arrive at (2.4) by
passing to the limit on noncompact manifold.

O

3.8. Proof of Theorem 2.4
Recall that w(y) is a bounded solution to

Aw(y) + w(y) — w’(y)

0
(3.8)
0<w(y) <1
on a complete noncompact M. By this one can apply (2.4) of Corollary 2.2. Now,
choosing p=1, ¢ =3, a=b=1 and infy w = D; and sup, w = Dy = 1, then

IVwl|? < e, [(m—1)k—(B+ 2)(inf w)? + ]
<em [(m— 1)K+ B(1 — (inf w)?)], (3.9)

where ¢, is a positive constant with dependency only on m, and consequently we obtain
(2.5).

Moreover, since M has nonnegative Ricci curvature, Ric(M) > 0, and w is a positive
solution satisfying 0 < w < 1, then by (3.9) it follows that |[Vw| = 0 meaning that w is
a constant and w = 1 identically. This concludes the proof.

O
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