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Abstract. Numerov method is a multistep numerical method that is used in solving second 

order differential equations. In this work, we apply this method as a Boundary Value Method 

(BVM) for the numerical approximation of both linear and nonlinear second order initial value 

problems. This is achieved by constructing the Numerov method via interpolation and 

collocation process while utilizing data at off-step points and implementing it as a BVM. On 

comparing the results obtained from the solved problems, it shows that the method is accurate 

with high level of convergence to their exact forms and performs better than results from 

literature. 

Keywords: Hybrid BVM; Linear Multistep Method; Initial Value Problem; Boundary Value 

Method 

1.  Introduction 

Due to the needs of mathematical modelization of real-life problems, the search for a better numerical 

method, which can handle different problems, remain active research for numerical analysts [1-6]. In 

this work, we derive a new scheme based on a Linear Multistep Method (LMM) called the Numerov 

method. This method is a numerical method used in approximating second order differential 

equations. Lots of studies have been done with this method [7, 8]. 

Our focus is to develop a new scheme called Hybrid Boundary Value Method (HyBVM). The 

development will be achieved by collocating and interpolating the LMM (mentioned above) at both 

step and off-step points. We then implement this scheme as a Boundary Value Method (BVM) to 

solve second order initial value problems of the form: 

 

                 
 

   0 0 0 0

, ,

,   

y f x y y

y x y x 

  


  

                                                                                               (1) 

where 0 , 0  are constants and f  is a continuous function which satisfies the conditions for 

existence and uniqueness of solutions, which are guaranteed by the theorem of Henrici in [9] for Initial 

value problems. 
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In deriving this method, we will be adopting the two step Numerov method, which is a LMM of the 

form: 

                
k 1 k

2

n k i n i i n i

i 0 i 0

y y h f 


  

 

                                                                                           (2) 

where h  is the step-size and ,i i   are constants. 

Different hybrid formulas based on LMM have been derived by authors [10 – 14], since they are more 

flexible the way they have been used and also possess small error constants. The BVMs were 

introduced to overcome some of the limitations encounter by the LMMs; they are better in 

approximating solutions. Several BVMs have been developed and discussed fully in literature [15–28]. 

The remaining sections of this study are structured as follows: In section two, the derivation and the 

specification of the method are discussed. In the third section, the results are presented with examples 

on both linear and nonlinear Initial Value Problems (IVPs). Section four offers a discussion of the 

results. The concluding remark is given in the last section. 

 

2.  Derivation of Methods [28] 

In this section, the aim is to derive a two-step LMM of the form: 

i i

i

k 1 k
2 2

n k i n i i n i v n v

i 0 i 0 v

y y h f h f  


   

 

                              (3) 

And also the derivative formula of the form 

i i

i

k 1 k
2 2

n k i n i i n i v n v

i 0 i 0 v

hy y h f h f  


   

 

                                 (4) 

using the same continuous scheme where 1k  , 0k   and 0 , 0  do not both vanish. 

We start the process of derivation by seeking to approximate the analytical solution  y x  by a 

continuous method  Y x  with its second derivative of the form: 

   
a b 1

i i

i 0

Y x P x
 



                                (5) 

   
a b 1

i i

i 0

Y x P x
 



                                (6) 

where ,  a b  are the number of interpolation and collocation points,  iP x  are the polynomial basis of 

degree a b 1  . A k -step multistep collocation method is then constructed from: 

     1TY x V M P x                             (7) 

where 

         0 1 2 1, , , ,n a bP x P x P x P x P x                               (8) 



International Conference on Recent Trends in Applied Research (ICoRTAR) 2020
Journal of Physics: Conference Series 1734 (2021) 012014

IOP Publishing
doi:10.1088/1742-6596/1734/1/012014

3

 

 

 

 

 

 

 1 1, , , , ,n n r n n bV y y f f                                (9) 

     

     

     

     

0 1 1

0 1 1 1 1 1

0 1 1

0 1 1 1 1 1

n n a b n

n a n a a b n a

n n a b n

n b n a a b n b

P x P x P x

P x P x P x
M

P x P x P x

P x P x P x

 

       

 

       

 
 
 
 

  
   

 
 
    

                      (10) 

Which results into a continuous LMM 

     
 1

2

1 1
2

0 0

a b

i n i i n i

i i

Y x x y h x f 
 

 

 

                          (11) 

where    ,i ix x   are continuous coefficients to be determined. This is then used to generate the 

discrete LMMs of the form (3) and derivative formulas of the form (4) and other additional methods. 

These equations are then applied simultaneously to solve (1) above. 
 
 

2.1.  Specification of the Methods [28] 

In this section, we specify the derived method. 

Consider the case 2k   with the specification 2a  and 5b   using (5) and (6) we have the 

following polynomials of degree 1a b   : 

   
6

i i

i 0

Y x P x


                           (12) 

   
6

i i

i 0

Y x P x


                           (13) 

which will yield the following vectors and 7 7  collocation/interpolation matrix: 

2 3 4 5 61, , , , , ,P x x x x x x                              (14) 

1 3
2 2

0 1 0 1 2, , , , , ,V y y f f f f f 
 

                          (15) 
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x x x x

x x x x
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 
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 
 
 
 
 
 
 
 
 
 

                      (16) 

These are then substituted into the equation below: 

     1TY x V M P x                          (17) 

which results into a continuous LMM 

 

   
  

   

   

     

   

     

   

1
2

0 0 0 1 0
0 04
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0 0

4 3

0 0

5 3 2

0 0 0

4

0 0
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0 0 01

4

3 4

5 6

3 4

0 0

5 6

360

53 123 52

8 127

18 60 65

45 27 4

5 60 95

60 48 8

h x x y x x y f
x x h x x

h h h

h h x x h x x

x x h x x

f h x x h x x h x x

h h x x x x

h x x h x x h x xf

h h x x

Y x

x x

  
    

   
 
   









  

     
 
    

     


  

     

   

     

   

3
2

5 3 2

0 0 0

4

0 0

5 3 2

0 0 02

3 4

5 6

3 4

5 64

0 0

2 20 35

45 21 4

3 30 55

360 36 8

f h x x h x x h x x

h h x x x x

h x x h x x h x xf

h h x x x x

 
 
 
 
 
 
 
 
 
 
  
 
  
  

 
      
  
      
       
       





                      (18) 

The main method (19) is then obtained by evaluating (18) at 2nx   : 

 1 3
2 2

2

2 1 1 22 26 16
60

n n n n n n n n

h
y y y f f f f f     

       
  

                      (19) 

which is used together with the following initial methods: 

1 1 3
2 2 2

2

1 1
0 1 0 1 22 2

19 14 204 204
1920

h
y y y f f f f f        

 
                     (20) 
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3 1 3
22 2

2

31
0 1 0 1 22 2

17 402 3 252 52
1920

h
y y y f f f f f       

 
                     (21) 

3 1 3
22 2

2

31
0 1 0 1 22 2

17 402 3 252 52
1920

h
y y y f f f f f       

 
                     (22) 

and with the following derivative formulas: 

31
2 2

1
2

2 0 1 2
0 1

7713 7

480 10 1440 144 240

fff f f
hy y y h

 
        

  

                      (23) 

31
2 22 0 1 2

1 0 1

1313
+

72 60 360 45 45

fff f f
hy y y h

 
       

  

                      (24) 

31
2 2

3
2

2 0 1 2
0 1

1571931 8
+

1440 15 96 80 720

fff f f
hy y y h

 
       

  

                      (25) 

31
2 22 1 2

2 1

2147 59
+

120 20 360 45 3

n nn n n
n n n

fff f f
hy y y h

  
 

 
       

  

                     (26) 

3.  Numerical Examples 

In this section, we apply the main method and additional method derived in the previous section to two 

(2) second order initial value problems. The obtained results are compared with their exact solutions 

and also with results from [28]. These are shown in the graphs (Figure 1 and 2) and Table 1 and 2. 

Problem 3.1: Consider the linear second order IVP [28]: 

2
3

2
4 8

d y dy
y x

dx dx
     ,      0  1x ,  

with initial conditions: 

   0 2      0 4y , y   

with exact solution:       2 2 33 3 3 1
2cos 2 sin 2

64 32 16 8

xy x e x x x x x
 

     
   
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Figure 1: Solution of Problem 3.1 computed with HyBVM (k =2, h = 0.03) 

 

Table 1: Absolute errors for Problem 3.1 (h = 0.1) 

x SSM(k=4) BVM(k=4)  BVM(k=5) HyBVM(k=2) 

0.0 0.00000 0.00000 0.00000 0.00000 

0.1 65.11 10  76.13 10  88.14 10  
87.14 10  

0.2 51.50 10  61.85 10  
72.44 10  71.75 10  

0.3 52.79 10  63.42 10  
74.55 10  72.94 10  

0.4 54.29 10  65.55 10  
77.29 10  74.02 10  

0.5 56.70 10  68.39 10  
61.06 10  74.72 10  

0.6 41.03 10  51.23 10  
61.45 10  74.66 10  

0.7 41.45 10  51.74 10  
61.93 10  73.36 10  

0.8 41.91 10  52.35 10  
62.47 10  82.24 10  

0.9 42.40 10  53.09 10  
63.08 10  75.39 10  

1.0 42.95 10  53.86 10  64.06 10  61.42 10  

 

Problem 3.2: Consider the nonlinear second order IVP [28]: 

22

2
0

d y dy
x

dx dx

 
  

 
  ,      0  1x ,  
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with initial conditions: 

   
1

0 1      0
2

y , y   

with exact solution:      
1 2

1 ln
2 2

x
y x

x

 
      

 
Figure 2: Solution of Problem 3.2 computed with HyBVM (k =2, h = 0.05) 

 

Table 2: Absolute errors for Problem 3.2 (h = 0.1) 

x SSM(k=4) BVM(k=4) BVM(k=4) HyBVM(k=2) 

0.1 97.51 10  96.67 10  91.03 10  
101.18 10  

0.2 81.80 10  81.60 10  
92.51 10  102.37 10  

0.3 82.88 10  82.55 10  
93.97 10  103.56 10  

0.4 83.65 10  83.23 10  
95.71 10  104.70 10  

0.5 87.05 10  84.45 10  
97.62 10  105.77 10  

0.6 71.20 10  84.82 10  
99.31 10  106.64 10  

0.7 71.73 10  86.27 10  
81.27 10  107.11 10  

0.8 72.14 10  86.09 10  
81.26 10  106.73 10  

0.9 75.82 10  87.42 10  
82.00 10  104.51 10  

1.0 61.15 10  85.55 10  83.46 10  101.73 10  
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4.  Discussion of Result  

In this work, a new method referred to as HyBVM has been applied to two second-order Initial Value 

Problems (linear and nonlinear). Figure 1 and Figure 2 show the comparison between the approximate 

solutions obtained from the two cases and their exact solutions. 

Tables I and II also show the absolute errors from Boundary Value Method (BVM k = 4, 5) and Self 

Starting Method (SSM) obtained in [28] and also the absolute error from our proposed method for 

problems 3.1 and 3.2, respectively. It was observed that the HyBVM performed better than these other 

methods for the two cases. 

5.  Conclusion  

In this paper, we have extended the Numerov method by applying and implementing them as 

Boundary Value Method (BVM). This was achieved by constructing the Numerov method via 

collocation and interpolation procedure while utilizing data at off-step point. We call the new method: 

Hybrid BVM (HyBVM). This new scheme was applied to two second order initial value problems, 

and the numerical tests confirmed that it of high accuracy when compared to the one in literature. 
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