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Abstract: In this study, the modified Picard Iterative Method (MPIM) is used to provide 

analytic and numerical solutions to linear Schrödinger Equations. These approximate-

analytical solutions for the examples under consideration are easily computed. The 

suggested method is employed without any transformation, discretization, linearization, 

or limiting assumptions. The obtained results are similar to their exact forms. As a result, 

the approach is highly suggested for both linear and non-linear time-space fractional 

partial differential models with applications in various applied disciplines. 
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1.0   Introduction 

The Schrödinger equation is a special partial differential equation (PDE) that appears in non-linear optics, 

superconductivity, plasma physics, and quantum mechanics, among other fields. The time-independent 

Schrödinger model or equation (TISE) and the time-dependent Schrödinger wave equation (TDSWS) are 

two versions of this equation [1, 2]. The typical form of a Schrödinger model is as follows (1.1). 
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                         (1.1) 

where  ,w w x t  is a complex,  p x  is a function of x  and  ,   are constants. 

For the solution of such a model, many methods have been used [3-7]. Other approximate methods can be 

used in the same way [8-11]. In this research, we solve the linear form of Schrödinger equations using an 

iterative approach termed modified Picard Iterative Method (MPIM). 
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2.0  Picard Iterative Method  and the Model  

The method of solution referred to as Successive Approximation Method (SAM) is introduced here, in 

line with some basic preliminaries.  

2.1 Lipschitzian Continuity Condition 

Let ( , )f t y
 
be given function, so ( , )f t y satisfies a Lipchitz condition with respect to y  in a certain 

region referred to as D  in the XY-plane, if there exists a non-negative constant  , such that  

( , ) ( , )a b a bf t y f t y y y     

whenever ( , at y ) and ( , )bt y  are in D , and   is called the Lipchitz constant. 

2.2  Overview of the Successive Iteration Method 

Suppose a first-order non-linear ordinary differential equation (ODE) is given as follows with an initial 

condition: 
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                                                                                                              (2.1) 

Suppose    
0

0
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t

t

dy I    denotes a one-fold integral operator w.r.t. a concerned variable; thus, by direct 

integration of both sides (2.1) over  0 ,  t t , we have: 
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This implies that: 
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                                                                  (2.3) 

By iteration, we substitute 1 1( ) ( )n ny t y t y    and ( )n ny s y
 
 

Therefore, (2.3) becomes: 
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3.0 Applications 

Here, the proposed method (MPIM) to a case study of a linear Schrödinger equation. 
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Case 3.1: In (1.1), we take  1,  0,  and 0p x     , then the following is considered: 
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 ,                   (3.1) 

Equation (3.1) is rewritten as follows: 
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Applying the SIM to (3.2), give the following relation: 

    1 0 0 ,   0.t

j j xx
h h I i h j                 (3.3) 

Thus, we obtained  the following iteratively: 
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The exact and 9-term approximate results are presented in Figure 1 and Figure 2, respectively. 
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Figure 1: Exact solution of (4.1) 

 
Figure 2: 9-term approximate solution of (4.1) 
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4.0 Concluding Remarks 

This research successfully employed the modified PIM (MPIM) to solve a linear Schrödinger. The 

iterative method suggested is computer-friendly and has a straightforward foundation. The MPIM's results 

are very comparable to those of other iterative methods available in the literature. MPIM also allows more 

accurate numerical solutions for non-linear problems. It also does not need much computer memory, 

stringent or constraining assumptions, or discretization procedures. 
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