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Abstract: A new approach called the Generalised Picard Iteration Sch eme (GPIS) is 

used to solve the Navier-Stokes equations in this paper. The solutions are organized in a 

series with components that are readily computed. Because it delivers the exact solution 

to the solved issue with minimal computing effort while retaining a high degree of 

accuracy, this method appears to be extremely adaptable, efficient, effective, and 

dependable. It is not necessary to identify Lagrange multipliers. As a result, the presented 

method is recommended for dealing with higher-order linear and non-linear models. 
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1. Introduction 

Navier-Stokes equations (NSEs) are important equations in the sketch of motion of viscous fluid 

substances in the physical sciences, such as engineering, mathematics, computational fluid dynamics, and 

other fields. NSEs relate the reaction of a fluid flow to pressure and external forces operating on it [1]. In 

their most basic form, the NSEs are: 
2

2

1w w w
P v

t   

   
   

   
,     ,0 ,w g                           (1.1) 

where v  is the kinematics viscosity, ,
P

P
z


 


 w  is the flow velocity, P  is the pressure, t  is the time.  

Some semi-analytical approaches have been used to solve NSEs [2-6]. Analytic and numerical 

approaches have been developed and used to provide solutions (numerical or exact) to differential 

equations [7-29]. Our goal in this paper is to present analytical solutions to NSEs using the generalised 

Picard Iteration Scheme. 

 

2 The Generalised Picard Iteration Scheme  

2.1 Lipschitzian Continuity Condition 

Let ( , )f t y
 
be given function, so ( , )f t y satisfies a Lipchitz condition with respect to y  in a certain 

region referred to as D  in the XY-plane, if there exists a non-negative constant  , such that  
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( , ) ( , )a b a bf t y f t y y y     

whenever ( , at y ) and ( , )bt y  are in

D

, and 



 is called the Lipchitz constant. 

2.2  Overview of the Successive Iteration Method 

Suppose a first-order non-linear ordinary differential equation (ODE) is given as follows with an initial 

condition: 

  

0 0

( , ),     

 ( )

dy
g t y

dt

y t y





 

                                                                                                                       (2.1) 

Suppose    
0

0

t

t

t

t

dy I    denotes a one-fold integral operator w.r.t. a concerned variable; thus, by direct 

integration of both sides (2.1) over  0 ,  t t , we have: 

   
0 0

0 0
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t t

t tI dy I g s y
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This implies that: 
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                                                                             (2.3) 

By iteration, we substitute 1 1( ) ( )n ny t y t y    and ( )n ny s y
 

 

Therefore, (2.3) becomes: 
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                                                                     (2.4) 

3. The Method Applied 

Here, the Generalised Picard Iteration Scheme (GPIS) is applied to the NSE: 

Case 1: 

 

2

2

1
,

,0 .

w w w

t

w

  

 

  
 

  
 

                                                                   (3.1) 

 

By the GPIM, we have: 

Equation (3.1) is rewritten as follows: 
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Applying the SIM to (3.2), give the following relation: 

   1 0 0

1
+ ,   0.t

j j jw w I w w j
 



  
    

 
                          (3.3) 

Thus, the following are obtained: 1 2 3,  ,  ,  w w w  , using 0w  : 
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Note: we use  0.1,  5  and  0,  10t  for the purpose graphical solution,  Figure 1 and Figure 2 

below represent the 3D plots of the solution for terms up to power seven and power five (in terms of the 

time variable 

t

), respectively. 
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Figure 1: GPIM Solution up to 
5t  term.to term 

 

 

 
 

Figure 2: GPIM Solution up to 
6t  term. 

4. Conclusion 

The generalized Picard Iteration Scheme has been used to the Navier-Stokes model solutions in this 

article. The solutions were in a series format, with components that were readily computed. Because the 

method gives the exact solution of the solved problem with minimal computing effort while keeping a 

high degree of accuracy, this suggested technique seems to be extremely adaptable, effective, efficient, 

and dependable. It is not necessary to identify Lagrange multipliers. As a result, the suggested approach 

is essential for handling higher-order linear and non-linear models. Maple 18 was used for the numerical 

calculations and graphics in this research. 
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