
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Elzaki Adomian decomposition method applied to
Logistic differential model
To cite this article: D.A. Dosunmu et al 2022 J. Phys.: Conf. Ser. 2199 012019

 

View the article online for updates and enhancements.

You may also like
New numerical approach for time-
fractional partial differential equations
arising in physical system involving natural
decomposition method
Saima Rashid, Khadija Tul Kubra, Asia
Rauf et al.

-

Fractional spatial diffusion of a biological
population model via a new integral
transform in the settings of power and
Mittag-Leffler nonsingular kernel
Saima Rashid, Khadija Tul Kubra and
Sana Ullah

-

Soliton Solutions of Kaup-Kupershimdt
Equation Using HPTM
Tiejun Chen

-

This content was downloaded from IP address 165.73.223.225 on 25/05/2022 at 13:59

https://doi.org/10.1088/1742-6596/2199/1/012019
https://iopscience.iop.org/article/10.1088/1402-4896/ac0bce
https://iopscience.iop.org/article/10.1088/1402-4896/ac0bce
https://iopscience.iop.org/article/10.1088/1402-4896/ac0bce
https://iopscience.iop.org/article/10.1088/1402-4896/ac0bce
https://iopscience.iop.org/article/10.1088/1402-4896/ac12e5
https://iopscience.iop.org/article/10.1088/1402-4896/ac12e5
https://iopscience.iop.org/article/10.1088/1402-4896/ac12e5
https://iopscience.iop.org/article/10.1088/1402-4896/ac12e5
https://iopscience.iop.org/article/10.1088/1742-6596/2173/1/012022
https://iopscience.iop.org/article/10.1088/1742-6596/2173/1/012022
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv-rfp1ZhRqS_SLnm7V7qm-kWAd8PD1M3Xx44n9nPfdJ4RJc5Sd4b80boP3Tc-N3AVFOoqo3NsdGtpD3n-nLdAvEzgfOy4ccSrYQ5Uet4APOgHW4dcdwGKMH82pZw7x8WlucpdhYqidDqs4UwXPHiwMtE1hsehu9i4rJMUPXVbirl-jdhf7Keb1f7Sqo8ajCza3hiNwjZYBFP0MFMviCuiPF88lk72zdr6nxVHZAX7Q3u4u_wrrf-RDlFUV5Q0_urruF6jhyt8Ezk2MY-5-78RfVK_KcqrFLqU&sig=Cg0ArKJSzFV9obLU6ZSD&fbs_aeid=[gw_fbsaeid]&adurl=https://community.electrochem.org/eWeb/DynamicPage.aspx%3Fwebcode%3DEventInfo%26Reg_evt_key%3D798362dc-7e0c-42ba-aaf6-31c3418f151e%26RegPath%3DEventRegFees%26FreeEvent%3D0%26Event%3D241st%2520ECS%2520Meeting:%2520Vancouver,%2520BC,%2520Canada%26FundraisingEvent%3D0%26evt_guest_limit%3D9999


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICORTAR 2021
Journal of Physics: Conference Series 2199 (2022) 012019

IOP Publishing
doi:10.1088/1742-6596/2199/1/012019

1

 

Elzaki Adomian decomposition method applied to Logistic 

differential model 

D.A. Dosunmu
1
, S.O. Edeki

1*
, C. Achudume

2
, V.O. Udjor

3
 

*1 
Department of Mathematics, Covenant University, Ota, Nigeria 

 2
Department of Computer Science and Mathematics, Evangel University, Akaeze,     

  Ebonyi State, Nigeria 
 3
SBU, Covenant University Ota, Nigeria 

 Contact Emails: deborah.dosunmu@stu.cu.ng; 
*
soedeki@yahoo.com 

 
Abstract. This study applies Elzaki Adomian Decomposition Method (EADM) to solve 

the Logistic Differential Model (LDM) of different forms and coefficients. Illustrative 

examples are considered, and the obtained results are in good agreement compared to 

those already in the literature. This study, therefore, recommends the proposed method 

(EADM) for application in other aspects of applied mathematics for real-life problems. 

 
Keywords: Logistic differential model, non-linear model, approximate solutions; Transform method 

 

1. Introduction 

A logistic differential equation is a conventional mathematical expression whose solution is a logistic 

function. Exponential functions fail to consider limitations that prevent infinite resources, whereas logistic 

functions do [1-3]. Many other areas, such as machine learning, chess ratings, cancer therapies (such as 

the modeling of tumor development), economics, and language adoption studies, rely on these types of 

models [4, 5]. This model is unrealistic since the environment constrains population expansion.  

 

 0

1 ,  ,

,0

dP P
rP P P x t

dt K

P P x

 
    

  
 

             (1.1) 

 

where  ,P P x t  is the population size of the species at time t ,  r  denotes the rate of growth in the 

absence of limited resources, and K  denotes the carrying capacity or the maximum population that the 

ecosystem can support indefinitely. 

The goal of this study is to apply the EADM to find a solution for the Logistic Differential Model (LDM) 

[6-10]. The aim is to present a simple and practical method for obtaining a better approximation to find 

the exact solution to the LDM. Thus, the objectives are to: apply EADM to the logistic differential 

equation and compare the results obtained via applying the EADM and exact solutions of the Logistic 

differential model. Although, numerical approaches have been arbitrated more efficient and reliable in 

solving the dynamical models (equations) and other differential models in this regard [11-20].  
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Different solution experts have recently discussed numerous methods for finding an exact or numerical 

solution to ordinary or partial differential models [21-26]. In this work, a novel approach termed 

Successive Approximation Method (SAM) is applied to some non-linear evolution models. 

 

2.  Note on Elzaki Adomian Decomposition Method (EADM)  

The EADM will be discussed here in relation to the  Logistic Differential Equation. 

 

2.1 Adomian Decomposition Method (ADM) 

Let us examine the differential equation of the following form: 

   , ,  ,Dw Rw Nw g x t w w x t                           (2.1) 

where the linear operator (differential) is D , the differential operator has a remaining part R  and a  non-

linear part, N , while  ,g g x t  is a source term. Generally, we choose  
n

n

d
D

dx
  , to be the nth-order 

differential operator, has its inverse 
1D
  follows as the nth-order integration operator. Therefore, the 

inverse linear 
1D
  used on (2.1), we have 

                             1 1 ,D Dw Rw Nw D g x t                                                        (2.2) 

where, 

                
1D Dw y α                                                                                             (2.3) 

and α  signifies the initial value. 

Thus, (2.3) becomes: 

                   1 1y α D Rw Nw gD
                                                                  (2.4) 

                 11y g α D Rw NwD
                                                                  (2.5) 

                   1y β y D Rw Nw                                                                                  (2.6) 

where, 

                 
  1β y D g α 

                                                                                              (2.7) 

which signifies a function obtained by integrating the source term with respect to the initial condition(s). 

The ADM expresses the solution  y t  in the series form: 

  0

n

n

y y





                                                                                                        (2.8) 

Also, the non-linear component can be stated as: 

 , m

n o

Nw x t A




                                                               (2.9) 

0

1
, , 0

n!

n
k

m kn
k o t

d
A f t λ y n

dλ



 

  
   

  
               (2.10) 

  1

0 0 0

n n m

n n n

y β y D R y A
  



  

  
    

  
              (2.11) 

By a recursive equation, we have: 

   0y x β x                                                                             (2.12) 

   1

1 , 0.n n my x D Ry A n

                                                   (2.13) 
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Thus, the solution is:  

 
0

lim n
n

n

y x y





 
  

 
 .                        (2.14) 

 

2.2  Elzaki Transform Method (ETM) 
 
The Elzaki transform method helps in solving differential equations (ODE) and partial (PDE) in the time 

domain. It is also used as an effective tool in response to initial data analyze the fundamental properties of 

a linear system governed by the differential equation. 

 

2.3.  Definition of Elzaki Transform  

Let C a function such that 

    1 2: ,  M, , 0jt k
C H t H t Me for k k   ,                                                                                 (2.15) 

Thus, the Elzaki transform of  H t  is defined and denoted as: 

     
0

e .
t

vE H t H v v H t dt




                 (2.16) 

2.4  Properties of Elzaki Transform 

The main properties of Elzaki Transform are: 

PE1:   21E v  

PE2:    3E t v  

PE3: 

2

e
1

at v
E

av
    

 

PE4: 
2 21

! .
!

n n n nE t n v E t v
n

         
 

 

2.5  Elzaki Adomian Decomposition Method (EADM) 

The EADM consists of a mix of both the Elzaki transform method and the Adomian decomposition 

approach. The problem can either be linear or non-linear. 

Let us consider the general differential equation of the form:  

   , ,  ,Dw Rw Nw g x t w w x t                                                                                           (2.17) 

where ,  ,  ,  and D N R g  are as defined earlier. 

Suppose, 

              
 

 

*

1,0 ,

,

g x g

w w x t

 




 

then the Elzaki transform of (2.17) is as follows: 

       E Dw E Rw E Nw E g  
 

       E Dw E g E Rw E Nw  
 

       
     

1
,T x v vw E g E Rw Nw

v
   
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     

     

2,

, ,

T x v v w vE g vE Rw Nw

T x v G x t vE Rw Nw

    


    

                (2.18) 

where  ,G x t  is the resulting term from the source  and initial condition terms when used. 

Based on the inverse Elzaki transform of (2.18), we have: 

             
      

    

1 1 1

1 1

, ,

               ,

E T x v E G x t E vE Rw Nw

h E G x t E vE Rw Nw

  

 

     


      

   .       (2.19) 

Using ADM, the series solution is defined as 

                 0

n

n

w w





                                                                          (2.20) 

And the non-linear term as: 

 0

,  as Adomian polynomials.

n

n

n

Nw A

A













                                                                                  (2.21) 

Hence, (2.21) becomes 

    

*

1 1

1

1

.
n n n

w g

w E v R w A



 


     

            (2.22)  

 

3.  Method and Model Discussed 

This part discusses the proposed method and the Logistic model, as formulated based on some 

assumptions. Case examples are also considered via the EADM. 

CASE I: Consider the following version of the LDE: 

 

 

1
1

4

1
0

3

dP
P P

dt

P


 


 


              (3.1) 

whose exact solution is: 

 
0.25

0.25

e
=

2 e

t

t
P t


              (3.2) 

By the EADM, we have: 

 
2

4 4
t

P P
E P E

 
  

 
              (3.3) 

   
21

, ,0
4 4

P P
T x v vP x E

v

 
    

 
             (3.4) 

   
2

2, ,0
4 4

P P
T x v v P x vE

 
   

 
             (3.5) 

Thus, 
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 
2 2

,
3 4 4

v P P
T x v vE

 
   

 
.             (3.6) 

Taking the Elzaki inverse of (3.6) gives: 

 
2 2

1 1 1,
3 4 4

v P P
E T x v E E vE  

    
         

    
 

 
2

1 2 1

2
1

1
,

3 4 4

1
                

3 4 4

P P
P x t E v E vE

P P
E vE

 



  
        

   


   
     

   

                      (3.7) 

Next, we apply the Adomian approach to (3.7), where  

 
0

, n

n

P x t P




 . 

Hence,  

1

0 0 0

1 1

3 4
n n n

n n n

P E vE P A
  



  

    
     

    
   .                                      (3.8) 

The recursive relation is: 

0

1

1

1

3

,  0
4 4

n n
n

P

P A
P E vE n




 




           

                                    (3.9) 

Thus, for 0,1,2,3,4,5,n  , the following are respectively obtained: 

2 3

1 2 3,  ,  ,
18 432 5184

t t t
P P P


    


 

  0 1 2 3

2 31
        

3 18 432 5184

P t P P P P

t t t

     



     


                                     (3.10) 

Exact solution: 

 
0.25

0.25

e
= .

2 e

t
Exact

t
P t

  
For numerical results, Table 1 and Table 2 are referred.  

 
       Table 1: Numerical results for Case II 

t  Exact Solution  :EADM Solution P t  Error 

0.0  0.3333333333  0.3333333333  0.00  

0.3  0.3502029635  0.3502031250  
71.615 10  

0.6  0.3674557720  0.3674583333  
62.6133 10  

0.9       0.3850548748  0.3850677083  
51.28335 10  
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CASE II: Consider the following version of the LDE: 

 

 

1
1

2

1
0

2

dP
P P

dt

p


 


 


                          (3.11) 

whose exact solution is: 

 
0.5

0.5

e
.

1 e

t

t
P t 


 

By the EADM, we have: 

 

   

2

2
2

2 2

, ,0 .
2 2

t

P P
E P E E

P P
T x v v P x vE

  
    

    


  
     

  

         (3.12) 

Thus, 

 
2 2

,
2 2 2

v P P
T x v vE

 
   

 
.           (3.13) 

Taking the Elzaki inverse of (3.13) gives: 

 
2

11
, .

2 2 2

P P
P x t E vE

  
    

  
                      (3.14) 

Next, we apply the Adomian approach to (3.14), where  

 
0

, n

n

P x t P




 . 

Hence,  

1 2

0 0 0

1 1
.

2 2
n n n

n n n

P E vE P P
  



  

    
     

    
    

Using Adomian Polynomials gives the following recursive relation: 

0

1

1

1

2

2 2

n n
n

P

P A
P E vE




 




         

. 

Thus, for 0,1,2,3,4,5,n  , the following are respectively obtained: 

3

1 2 3 4, 0, , 0,
8 384

t t
P P P P


     


 

  0 1 2 3

31
        

2 8 384

P t P P P P

t t

     



    


                                                  (3.15) 

 
0.5

0.5
= .

1

t
Exact

t

e
P t

e
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                                              Table 2: Numerical results for Case II 

t  Exact Solution  :EADM Solution P t  Error 

0.0  0.5  0.5  0  

0.3  0.5374298453  0.5374296875  
71.578 10  

0.6  0.5744425217  0.5744375000  
65.0217 10  

0.9  0.6106392339  0.6106015625  
53.7671 10  

 

4. Conclusions 

In this work, the Elzaki Adomian Decomposition Method (EADM) was applied to the non-linear 

differential equation known as the Logistic Differential Model. The EADM has an advantage in its 

applicability, speed of convergence, and accuracy, unlike other numerical methods. Applying the EADM 

yields a series solution. The EADM is a very effective tool in the solution of the Logistic Differential 

Model. It can also be applied to several other more complex ordinary differential equations (both linear 

and non-linear). The results have shown distinctive characteristics of the method in terms of effectiveness 

and speed of accuracy. The EADM does not require linearization and initial guess points. 
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