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Abstract. In this paper, solution of the linear version of Klein-Gordon equation is considered 

via the application of natural transform combined with decomposition method. Hereafter, 

referred to as natural decomposition method (NDM). This proposed method shows viable 

improvement and reliability in usage compared to the classical natural transform. Illustrative 

example(s) are considered, and the solution (root) is shown to follow a closed form. Therefore, 

the NDM is recommended for highly nonlinear differential models both in pure and applied 

sciences. 

Keywords: Analytical solutions; Decomposition Method; Klein–Gordon model, Closed form 

solutions 

1.  Introduction 

In applied mathematics, Klein-Gordon Equation (KGE) is one of the most vital of partial differential 

equations (PDE). The Klein-Gordon equation plays a significant role in mathematical physics in 

relation to the study of solitons, condensed matter physics, and so on. Its theoretical relevance is 

similar to that of the Dirac equation [1-5]. The modeling pattern of the KGE can result to linear and 

nonlinear models whose solutions, if they exist are not easy to obtain. Hence, the need for effective 

and reliable semi-approximate methods of solution such as decomposition, numerical, and integral 

transform methods [6-17]. The general form of the KGE to be considered in this work is of the form: 

   

   

   
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,  ,

,0 ,

,0 ,
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         (1) 

where  F   denotes a known analytic function, and  ,a   . 

In recent times, the KGE (1) has drawn the attention of so many authors with respect to solution 

methods [18-24]. This present work aims at combining decomposition method with natural transform 

method for the solutions of the linear KGE. 
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2.  Natural Transform and Natural Decomposition Method 

 

The preliminaries of Natural Transform (NT), and its basic properties are given in this section [25-27].  

Let H  be a class of functions such that: 

    1 2:   , , 0 it k
H g t c k k g t ce     ,          (2) 

then, the natural transform of  g t  is defined and denoted as: 

        
0

, , 0,stN g t Q s g t e dt  t 


                (3) 

provided the integral in the right hand side exists. As a consequence, the Inverse Natural Transform 

(INT) associated with (3) is defined and denoted as:  

        1 1 , .N N g t N Q s g t                              (4) 

In general, it is remarked that: 
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2.1 Natural Transform of Derivatives 

For a continuous function,  ,g x t  in A  as defined earlier, we have the following: 
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2.2 Natural Decomposition Method 

Let a general nonlinear nonhomogeneous partial differential equation be defined as: 

 

       

   
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             (6) 

where D  is an 
thn  order differential operator in t , R  is  the remaining part of the  linear differential 

operator,   and  ,m x t are nonlinear differential operator and source term respectively. 

So taking the natural transform of (6) gives: 
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Showing that: 



3rd International Conference on Science and Sustainable Development (ICSSD 2019)

IOP Conf. Series: Journal of Physics: Conf. Series 1299 (2019) 012138

IOP Publishing

doi:10.1088/1742-6596/1299/1/012138

3

 

 

 

 

 

 

`

            
11

0

, ,0 , , ,
n n jn

j

n n j
j

s
 Q s g x N m x t N R x t x t

s


  



 




 
         

 
 .           (9) 

So, taking the INT   1

tL   on both sides of (9) gives:  
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        (10) 

According to Adomian and its polynomials, the solution and the non-linear part are: 
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and
iA  defined as: 
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Thus, (10) becomes: 
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Therefore, the solution,  ,x t  is obtained using (14) as follows: 
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Whence,   ,x t  is finalized as: 
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3.  Applications 

 

Case 1:  Linear KGE of the following form is considered [1, 24]: 

 
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           (16) 

The exact solution of (16) is: 

 , sin coshx t x t   .           (17) 



3rd International Conference on Science and Sustainable Development (ICSSD 2019)

IOP Conf. Series: Journal of Physics: Conf. Series 1299 (2019) 012138

IOP Publishing

doi:10.1088/1742-6596/1299/1/012138

4

 

 

 

 

 

 

Procedure w.r.t Case 1: 
By applying the N-transform to (16), we have:  

    .tt xxN N               (18) 
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Applying the N-inverse,  1N    and the initial condition to (20) gives: 
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Hence, the solution in Adomian series form is expressed as: 
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So, the recursive relation is: 
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As such, for 1,n   we have the following: 
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  

Therefore,  
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        (24) 

Equation (24) corresponds to the exact solution of the classical KGE obtained in [1, 24]. 

The graphical solutions are presented in Figure 1 and Figure 2 for exact solution and approximate 

solution respectively. 

 
   Figure1: NDM Exact solution of Case 1 

 
Figure 2: NDM 4-term Approximate solution Case 1 
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4.  Conclusions 

 

This work presented the application of Natural Decomposition Method (NDM) to the linear version 

of Klein-Gordon equation for approximate-analytical solutions. The problem is solved without a call 

for variable-discretization. The obtained result showed that the NDM is effective and reliable. The 

solutions were expressed in closed form with less computational time involvement. Thus, the NDM is 

recommended for highly nonlinear Klein-Gordon equation and other related differential models in 

applied sciences.  
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