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Abstract. This paper considers the exact solutions of the time-fractional classical Black-

Scholes option pricing model through the application of a method known as He-Separation of 

Variable Transformation Method (HSVTM). The HSVTM combines the basic properties of the 

He’s polynomials, the Homo-separation variable, the modified DTM, which increases the 

efficiency and effectiveness of the proposed method. The proposed method is direct and 

straight forward. Hence, it is recommended for obtaining solutions to financial models 

resulting from either Ito or Stratonovich Stochastic Differential Equations (SDEs). 

1.  Introduction 

The Black-Scholes Pricing Model (BSPM) for European option pricing and valuation plays a notable 

role in risk and portfolio management [1-11]. Though, some of the BSM underlying assumptions when 

relaxed leads to more complex and nonlinear versions. Hence, the need for effective and efficient 

numerical, semi-approximate methods of solution. The solution of the Black-Scholes model is used for 

describing the value of option mainly of European type. The solution solves the model of the form: 
2

2 2

2
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0

2

f f f
S rS rf

S S




  
   

  
                          (1) 

with the following as defined:  ,f f S 
 
represents the value of the underlying S , at a particular 

time,   such that        2,10, ,   [0, ] , , 0,t f C R T S R T      , for the underlying asset 

( )S S t , the volatility is  , r  is taken as the risk-free interest rate, meanwhile, the maturity time is 

T .   

Other solution methods suffice; for instance, the Picard iteration method (PIM) was initiated by a 

group of people Augustin–Louis Cauchy, Emile Picard, Rudolf Lipschitz, Ernst Lindelöf. The theorem 

is imperative in the existence and uniqueness of first-order equations solutions when given initial 
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conditions. This method has been used for many years and has been proven to be a promising method 

in modeling. The Picard iteration method (PIM) was used by several researchers [5, 6]. 

In this work, we will look at a generalization of (1) regarding fractional order in terms of real and 

complex order of the derivatives. This will be regarded as a non-integer (time-fractional) Black-

Scholes model (TFBSM) following the form: 

   
2

1 22
, ,  , 0m S m S r r

S S




 



    
    

  
                         (2) 

subject to an attributed initial or boundary conditions,  ,  , 0,1, 2,3,im i   , are non-zero 

functions. 

Numerical methods and a lot of solution methods have been considered for solving related problems 

[12-18]. He’s polynomials method was initiated in [19, 20] by Ghorbani et al. Recently, Ghandehari 

and Ranjbar [21] presented the exact solution of option pricing model built on Fractional Black-

Scholes (FBS) equation by means of a modified Homotopy Perturbation Method (HPM). In their 

method [21], they obtained the exact solutions basically with the aid of green function by combining 

the separation of variables method with HPM. Ouafoudi and Gao [22] introduced two solution 

methods viz: modified HPM and Homotopy Perturbation combined with Sumudu transform for 

handling the same option pricing model as considered in [21]. Both views of [21] and [22] required the 

application of the green function. The new approach in this present work aims at providing exact 

solutions to the time-fractional classical Black-Scholes option pricing model through the He-

Separation of Variable Transformation Method (HSVTM). The HSVTM combines the basic features 

of the He’s polynomials, the Homo-separation variable, and the modified Differential Transform 

Method without the concept and application of the green function. Here, the fractional derivative is 

defined in the sense of Caputo. 

 

 

 

2.  Remarks on the He’s Polynomial Solution Method 

 

Suppose a general form is considered as follows: 

  0                (3) 

for a differential or an integral operator,   and  ,H p  denotes a convex homotopy given as: 

       , 1H p p p                                 (4) 

where   is a known operator (functional) with 0  as a solution. Therefore, we get: 

   

   

,0

,1

H

H

 

 

  


  

                           (5) 

where the parameter  0,1p  is embedded. According to HPM in [19, 20], the parameter, p  is used 

in the expansion of: 

2

0 1 2

0

.j

j

j

p p p    




                   (6) 

From (6) we have the solution as 1p  . Though, the convergence of (2.4) as 1p   has already 

been considered in [23]. Related convergence theorems are referred [24, 25]. 

The method considers  N   as the nonlinear term given as: 
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where the He’s polynomials, 'kH s  can be obtained using: 
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 .             (8) 

3.  Applications 

 

In this section, the following time-fractional Black-Scholes equation is considered. 

Problem 1:  A linear Black-Scholes equation of the following form is considered: 
2
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                                          (9) 

subject to: 

   
3

3 , for 0
,0 max ,0

0, for 0 

x x
w x x

x

 
  


 .                        (10) 

Procedure w.r.t Problem 1:   

Choose  * ,w x t  as an initial approximation to (9) such that: 

         3 2

* 1 2, max ,0 3max ,0w x t x t x t   .                     (11) 

Hence, (3.1) becomes: 
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Thus, 

            3 2
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We therefore obtain the FODE system: 
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.                        (15) 

From (15), it is obvious that  2 0t  . But solving (14) using the transformation properties [14] with 

 1 h  as the differential transform of  1 t gives: 
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Thus,  
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So, using (15) and (16) in (17) gives: 
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4.  Conclusions 

 

This paper presented the exact solutions of the time-fractional classical Black-Scholes option 

pricing model through the He-Separation of Variable Transformation Method (HSVTM) by combing 

the basic properties of the He’s polynomials, the Homo-separation variable, and the modified DTM. 

The engendered fractional derivative is defined in the sense of Caputo. The HSVTM is direct and 

simple in application, and no knowledge of green function, linearization, or Lagrange multiplier is 

required. Hence, it is recommended for obtaining solutions to financial models resulting from either 

Ito or Stratonovich Stochastic Differential Equations (SDEs). 
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