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 Abstract. In this article, the solution of the time-fractional linear Klein-Gordon Equation 

(TFLKGE) is considered. This is in combination with Laplace Decomposition Method 

(LDM) and Fractional Complex Transform (FCT), herein referred to as FCLDM. In 

contrast with the standard LDM, this proposed approach demonstrates a feasible 

improvement and efficiency in use. Considerations are made Illustratively using some 

examples, and a closed solution of the problem is obtained with ease. The FCLDM is 

recommended for physical modeling of real-life problems both in pure and applied sciences 

and for strongly non-linear differential models. 

. 

 Keywords: Caputo fractional derivative, Fractional Klein-Gordon equation, Fractional 

order, Laplace decomposition 

  

1  Introduction 
 

One of the crucial tools for seeking the solution of differential equations is the mathematical 

solution method [1]. The solutions obtained from the differential equation are used as stability 

analysis, robustness analysis, and so on, even for analytical controllability whose aim is to analyze 

and control the model involved [2-4]. The Klein-Gordon equation (KGE) proposed by Oscar Klein 

and Walter Gordon in 1927 is an interesting differential equation [5-8]. KGEs are a simple class of 

equations of non-linear progression that exist in classical relativistic and quantum mechanics. The 
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analysis of solitons and the study of condensed matter has gained a lot of publicity. The KGE is 

capable of observing quantum motion, actual plasma distribution, and the acceleration of other 

waves. Many approaches for solving Klein-Gordon equations have been used in recent years, such 

as the Variational Iteration Method (VIM), Sumudu Decomposition Method (SDM), Laplace 

Decomposition Method (LDM), Natural Decomposition Method (NDM), Homotopy Perturbation 

Method (HPM), Sumudu Transformation Method (STM), Adomian Decomposition Method 

(ADM), and so on [9-17]. The availability of exact or numerical solutions to linear and non-linear 

differential equations has contributed to direct and semi-analytical methods being developed and 

implemented [18-26]. In the analysis and simulation of many of the realism problems that arise in 

applied mathematics and physics, fractional partial differential equations (FPDEs) are frequently 

used, including fluid dynamics, electrical circuits, induction, damping rules, mathematical biology 

relaxation processes [18-29]. Fractional derivatives include real-world issues with more detailed 

representations than integer-order derivatives; they are currently considered an effective method 

for explaining some physical problems. A critically relevant, useful branch of mathematics, the 

subject of fractional calculus plays a severe and crucial role in defining a complicated dynamic 

activity in a wide variety of application fields, helps to understand the essence of matter as well, as 

simplifying the control design without losing inherited behaviours and demonstrating much more 

complex structures. 
 

The general time-fractional Klein–Gordon equation to be considered in this work is of the form: 
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where i�  are constants, �  represents the time-fractional order of the derivative, � �,x t� ��  is an 

unknown analytical function to be determined. The classical Klein–Gordon equation can easily be obtained 

from (1.1) when 1.� �   

 

 
2  Basic Remarks and Preliminaries 
We make some vital remarks as follows.  
Remark 1: Jumarie’s Fractional Derivative (JFD): Suppose � �g w  is a well-defined and continuous 

real function of w  and w
gD g

w

�
�

�

	
�

	
 denotes Jumarie’s Fractional Derivative of � �g g w� , of 

order � w.r.t. w . Then,  
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here, � �� �  denotes a gamma function, see details and additional properties in [19], the basic 

features of JFD are stated as follows via B1-B5: 

B1:  0,  0,   is a constantwD c c� �� � , 

B2: � �� � � � ,  0w wD cg w cD g w� � �� � , 

B3: � �
� �

1
,  0,

1
wD w w� � � ��
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B4: � � � �� � � � � �� � � � � �1 2 1 2 1 2w w wD g w g w D g w g w g w D g w� � �� 
 , 

B5: � �� �� � 1

w w fD g w f D g D w� �� � , 

Remark 2:  FCT and the generalized differential model: Consider a given general time-fractional 

differential model of the form: 

 � � � �, , 0,  ,t xh w D w D w w w t x� � � � .                                    (2.2) 

Then, for some unknown positive constants, 1 2 and a a , the FCT [22] is defined as follows: 
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such that: 
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2.1 Laplace Transformation Decomposition 

The LADM incorporates the Laplace method and the classical Adomian method of decomposition. 

With a few iterations, the process gives the solution directly. Consider the general non-linear partial 

differential equation in general first order: form: 



International Conference on Recent Trends in Applied Research (ICoRTAR) 2020
Journal of Physics: Conference Series 1734 (2021) 012024

IOP Publishing
doi:10.1088/1742-6596/1734/1/012024

4

� �
� � � �1

, ( , ) ( , ) ( , )

,0 , ,

Dp x t Rp x t Np x t g x t

g x g p p x t�


 
 ��
�

� ��
                     (2.5)  

here D and R  are differential operators, while N  is the non-linear part of the differential 

operator and ( , )g g x t�  is a source term. Equation (2.5) is restructured in the following way: 

 � �, ( , ) ( ( , ) ( , ))Dp x t g x t Rp x t Np x t� � 
                       (2.6) 

With reference to details in [19], we have: 
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The proposed LADM gives the  solution to the problem in an infinite series form:       
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Though, � �,np x t  is being obtained recursively, � �,Np x t  (the non-linear term) is given as:               
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where bA  denotes the Adomian polynomials given thus: 
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The recurrence relation form: 
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3.0   Applications: FCLDM and linear Klein–Gordon equation  

In this section, the proposed approach/method is applied to the linear Klein–Gordon equation as 

follows: 

Now, suppose we consider a case where 1 2 31,  and 0� � �� � � , the (1.1) becomes:  
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Solution procedure: By FCT,  
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Hence, we have (according to section 3) 
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Thus, (4.1) becomes: 
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Thus, by applying the Laplace transform Decomposition Method presented in section 2 to (3.3), the 

solution of (3.3) is given as: 
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Hence, the corresponding exact solution of (3.1) is: 
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, sin exp .
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tx t x
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                                   (3.5) 

4  Conclusion 
 

This study has applied the adaptation of the Fractional Coupled Laplace Decomposition Method (FCLDM) 

to the linear variant of the time-fractional Klein-Gordon equation in terms of approximate -analytical 

solutions by coupling the Laplace Transform and Adomian Decomposition Method with Fractional 

Complex Transform (FCT). The problem is resolved without a variable discretization call. The results also 

show that the proposed FCLDM is effective and precise in terms of application. The solutions were 

analytically expressed with little or no computational interference. For highly non-linear Klein-Gordon 

models and other related model variations in implementations, the FCDM is therefore suggested.. 
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