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 Abstract. In this article, we implement the Projected Differential Transform Method 

(PDTM) coupled with Laplace Transform Method (LTM), hereby referred to as 

LPDTM, to solve a one-dimensional heat model (equation) with axial symmetry. 

Using the proposed framework (LPDTM), the exact solution (results) are obtained 

with convenience. It is noted that the suggested methodology performs very well and 

gives rapidly converging series solutions with less computational activities. 

. 
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1.0 Introduction 

Differential equations are keys tools both in pure and applied research. Their simplicity makes them 

relevant to various fields ranging from physics to engineering and other applied sciences.. The 

concepts of differential models are very helpful, even in simulation and forecasting of activities around 

us, such as predicting likely results and analyzing the spread of disease or improvements in species 

population over time. If an unknown incidence varies regarding time or space, it replicates a 

differential equation built on phenomena, which entails the processing speed and spatial order [1-4].  

In most science fields, the heat equation is extremely significant. The Heat Equation is used as the 

Fokker Planck equation in finance and statistics. The diffusion equation occurring in the sample for 

chemical diffusion and other processes is a more general heat equation variant. A one-dimensional 

hyperbolic heat conductor may influence the thermal equilibrium of the superconductor when used. 

Efforts were made to consider the physical and chemical impact of soil temperature. Modeling the 

water and heat transport in soils and researching temperature impact on soil physical and chemical 

characteristics were the subject of recent efforts [5-8]. The temperature depends partially on the soil 

hydraulic properties due to the temperature influence on water viscosity. Soils may be modeled 

numerically or analytically for water and heat conversion. Numerical techniques have become the 

main study on water modelling and heat transport in soils [3, 4]. 

The Axial Symmetries (ASs) are referred to as isometric transformations, but they are in the opposite 

direction since they preserve distances from the corresponding pictures. There is axial symmetry if the 

points of origin match the points of the object. The symmetries are connected to most differential 
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models (equations) [6,7]. Here, a source-less heat equation/model will be considered as follows. Thus, 

a one-dimensional unsteady thermal system (process) with axial symmetry takes the form: 

  

   ,0 .

u u

t

u h




  

 

    
  

   
 

                            (1.1) 

In (1.1), body temperature at the point   , and time parameter, t  is given as  ,u t  , where 0,   

regulates the speed and spatial order of the system. For approximate solutions to related models, 

computational methods are being sought [9-22]. In this case, a one-dimensional version of the heat 

equation/model with axial symmetry is used for the approximate LPDTM process. 

 

2.0 Laplace transform and the Projected DTM [18, 21] 

 

Definition 1: Let   ,I a b  be a time interval such that   ,t I a b    and  h t  a continuous 

function in   ,I a b ,  the integral transform of  h t  is denoted as: 

     ,

b

a

I h t h t s t dt                               (2.1) 

where  ,s t  denotes the kernel of the transformation. Though, it depends on the differential types 

and their properties. Suppose the kernel for Laplace transform: 

   
 exp ,  0

,
0,    0,

st t
s t

t


   
 

  
  

then,  

     
0

expL t st t dt 


                                                                                        (2.2) 

is called the Laplace transform (LT) of    t h t  . 

The key components of LT and their proof are can be seen in standard text. However, the following 

are noted [21].  

 

 

  

   1

,  0,  ,

1
exp ,

1
,  0

!

mm

c
L c s k

s

L at
s a

L t s s
m

 


 








 



                                        (2.3) 

 

2.1 Remarks on the PDTM 

The underlying principles and strategies of the proposed approach (PDTM) are illustrated in this 

section [10, 12, 18]. Let  ,  h x t  defined on a given domain, ,G  be an analytic function, at a specified 

point  0 0,  x t , such that the Taylor series expansion of  ,h x t , is ascertained. Then, the projected  
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differential transform of  ,h x t  and its inverse projected differential transform are defined and 

represented respectively as: 

 
 

     

0

0

0

,1
,  

!
.

, ,  

m

l

t t

m

m

h x t
H x m

m t

h x t H x m t t







 
  

  



  




                     (2.7) 

The following properties (P1-P5) and theorems associated with the method of solution are noted as 

follows in Table 1:     

 

Table 1: Some Basic Properties of the PDTM 

Property Original function form Projected Transform form 

P1      ,  ,  ,  a bh x t h x t h x t         ,  ,  ,  a bQ x m Q x m Q x m    

P2 
 

 * ,  
,  ,

n

n

h x t
h x t

t






 
     *! ,  ! ,  m z x m m n H x m n    

P3 
 

 * ,  
,  

h x t
h x t

t






 
     *! ,  1 ! ,  1m Q x m m H x m    

P4 
   

 * ,  
,  

n

n

h x t
h x t f x

x





    

 * ,  
,  

n

n

H x m
H x m f x

x





 

P5      2

*,  ,  ,h x t f x h x t
        * *

0

,  ,  ,  .
l

i

H x m f x H x i H x m i


 
 

 

2.2 Laplace transform and the projected transformation method  

The LPTDM is both the mechanism of transformation of Laplace and the project. With a few 

iterations, the process presents the solution clearly. 

Considering the general partial differential equation (PDE):

 

   1

, ( , ) ( , ) ( , )

,0 , ,

Dg x t Rg x t Ng x t h x t

g x g g g x t

  


 

                                                                              (2.3)  

such that D ,  ,  ,  and ,R N g g x t  n-th order derivative operator,  remaining section of the 

derivative or differential operator, non-linear differential operator, and source term, respectively. 

Equation (2.3) is re-expressed as: 

 , ( , ) ( ( , ) ( , ))Dg x t h x t Rg x t Ng x t   .                                                                  (2.4) 

Then,  by the Laplace and inverse Laplace transforms of (2.4), we have: 

                                           

    
 

  

,

1 1 1 1,0 ,

( , ).

x t

g g x L s L g L s L Ng Rg

g g x t



   


    
 

              (2.5) 

Therefore, applying PDTM to (2.5)  gives the following recurrence relation:    

  
   

1 1( , 1) ( , ) ( , ) ,

,0 , ,  ( , ).

G x k L s L NG x k RG x k

g x x t g g x t

     


 

                                 (2.6)  
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Equivalently, we have: 

     

   

   

1 1

0

1

1

1

0

, ,0

1
, 0

, ,

k k k

i

i

G L s L G x t G x

G L L R G NA k
s

g x t x t G

 












  

  

     
 


 




                                                             (2.7) 

where kA  implies Adomian polynomials. 

 

3 Test Examples/Applications 

Considering (1.1) with some known initial data (conditions) for case-example IA and IB as follows 

[22]:  

Case IA: Suppose the following 1D heat model of the form: 

  2,0 1 7 .

u u

t

u




  

 

    
  

   
  

                  (3.1) 

Case IB: Consider the 1D heat model of the form: 

  2,0 .

u u

t

w




  

 

    
  

   
 

                             (3.2) 

According to the proposed method in section 2, the solutions for case IA and IB  are obtained and 

presented respectively, as follows: 

   2, 1 7 4u t t     ,                 (3.3) 

   2, 4w t t     .                  (3.4) 

4.0 Conclusion 

The LPDTM, as a combination of Laplace Transformation (LT) and the Projected 

Differential Transform Method (PDTM), has been successfully used to study a one-dimensional heat 

equation (model) with axial symmetry. With less time and few iterations in terms of computation, the 

solutions were obtained with ease. Therefore, the LPDTM is recommended for the solutions of other 

linear and non-linear models of higher-orders; since the proposed algorithm has been ascertained for 

suitability with rapidly convergent series solutions. 

Acknowledgment: Sincere thanks to Covenant University management for the provision of an 

enabling environment. 
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