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Abstract. This paper introduces the Fractional Projected Differential Transform Method 

(FPDTM) for the solution of the Time-fractional Barrier Option Black-Scholes Pricing Model 

(TFBOBSPM). The method seeks the solution using sufficient initial (transformed boundary 

conditions), without any discretization or restrictive assumptions. The efficiency and precision 

of the proposed methods are tested using illustrative examples. Thus, the FPDTM is suggested 

for strongly nonlinear differential models with financial applications. 

Keywords: Option pricing; Black-Scholes equation; Differential model, Barrier option; 

fractional calculus 

1.  Introduction 

 

The interdisciplinary subject of mathematics and finance, also known as mathematical finance, 

analytical finance, and financial mathematics, emerged at the beginning of the 1980s and the 

beginning of the 1990s [1].  Financial mathematics primarily uses the modern mathematical methods 

and techniques of finance such as stocks, bonds, securities, potential investments, options, and other 

financial instruments to include stochastic analysis, stochastic optimal control, portfolio analytical, 

non-linear analysis, multivariate statistical analysis, calculus, mathematical system, modern 

computational methods, and so on [2-7].  Options trading, due to its position in the financial system, is 

especially relevant [8, 9]. Conventional option contracts are traded, and their prices are typically 

released on options markets. Nevertheless, more personalized option agreements, including exotic 

options, are important in order to respond to more advanced risk mitigation approaches. In addition, 

the Barrier option is referred to as the contingent on a pre-expiration stock price known as the Barrier 

[8-10]. Barrier options [11-14] are exotics path-dependent and are identical to ordinary options in 

many respects. You can put or call in Bermuda, American,  or European-style exercise. But they only 

become triggered or extinguished if the underlying level (the barrier) exceeds a predetermined amount. 

In-options start their lives worthless and only become active in case of breach of a prescribed knock-in 

barrier price. Out-options start their active lives and become null and void if there is a breach of a 

certain knock-out barrier limit. Most of these models are differential in nature. Differential equations 

perform crucial roles in diverse fields like natural sciences, chemistry, physics, economics, and 

biology in real-life modeling phenomena. As the relevance of ordinary, partial, and integral equations 
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is growing, seeking approximate solutions has drawn many applied mathematics researchers to 

establish various methods for solving those equations [15-24]. The majority of the real problems of 

engineering and technology are influenced by partial differential equations. In certain cases, such 

equations can be analytically resolved, and in other situations where the equations do not have 

analytical solutions, numerical techniques could be used. It is a common reality that empirical 

solutions are very complicated and time-consuming to achieve for any ordinary and partial differential 

equation. As an option, numerical analysts are searching for numerical methods that can be rendered 

with a rational error limit as precise as practicable.  

A fractional derivative (FD) as a part of fractional calculus (FC), entails a derivative of any random, 

real, or complex computational mathematics and mathematical analysis form. FD's first mention is in a 

letter from Gottfried Wilhelm Leibniz to Guillaume de l'Hôpital in 1695 [25]. FC was intitiated and 

introduced in one of Abel's early papers [26], which shows the concept of integration, the 

differentiation of the fractional-order, the reciprocal connection of these elements, the notion of 

differentiation and integration of the fractional-order as the same generalized operation, and also the 

clear notation of differentiation. Fractional calculus concepts and implementations have grown 

considerably over the 19th and 20th centuries, and many researchers have described fractional 

derivatives and integrals [27-33]. The FPDTM is proposed in this study for an effective solution to the 

TFBOBSM. This approach is defined in terms of Caputo fractional derivatives. 

This study aims to review, as follows, a time-fractional barrier option pricing model within the Black-

Scholes system with a focus on down-and-out call options over a certain barrier term. 

2.  The Dynamics of the time-fractional Barrier Option 

 

Suppose at time t T  , with  S t   as the stock price at time , t   such that K   and B  are the strike 

price and barrier option  respectively, then the corresponding payoff of a down-and-out call option is 

defined as:  

   0 ,d

Tf S S K t T


     

Then, a barrier option is referred to as a traditional option with an additional constraint involving B , 

such that the following partial Black-Scholes Model (BSM) is satisfied.   

     

2 21
0

2

, , 0, ,

t S SSP rSP S P rP

P S T S K S






   


    

                              (1) 

where  
P


 denotes partial derivative operator w.r.t. a subscripted variable,  ,P S t  is the option 

value, 0   , the volatility parameter, ,r  the risk-free interest rate, and  , 0P B t   is the 

extra (additional) condition. For simplicity, we intend to reduce (1) to simplier version based 

on the following change of variables: 

 1ln

.

ww SB S Be

T t

   


 

        

      (2) 

Thus,  
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     

            (3) 

Putting (2) and (3) in (1), with little algebra, we have: 

     

2 21 1

2 2

,0 , 0, 0.

w ww

w

P r P P rP

P w Be K P

  




  
    
 

   


          (4) 

In fractional term, we proposed the following: 

     

2 21 1
,0 1

2 2

,0 , 0, 0.

w ww

w

Q r Q Q rQ

Q w Be K Q



   




  
      
 

   


         (5) 

Note that the classical BSM for European call option is retrievable from (4-6) for 1B   and 

0  .   

 
The barrier is noted to be below the initial stock price; if not, the option is worthless. Since this goes 

beyond the established barrier, the idea of the down-and-out option was cultivated.  

Financial models and the likes are, in most cases, in the form of ordinary or partial differential 

equations [28-32]. Few of these differential models have known exact solutions. However, obtaining 

the solutions of some of these seems tedious and time-consuming. This is even when the existence of 

the solutions is guaranteed [33-45]. Thus, a lot of numerical approaches have been proposed and 

adopted; notwithstanding, better approaches are anticipated. In this regard, the Barrier option model 

built on the classical BSM is extended to an equivalent time-fractional form, and a fast and efficient 

semi-analytical method is proposed [28]. 

 

2.1 Remarks on the FPDTM 

This section introduces the basic principles and methods of the proposed approach (PDTM) 

with reference to [28, 36]. 

Let  ,  q x t  defined on a given domain, ,G  be an analytic function,  at a specified point 

 0 0,  x t , such that the Taylor series expansion of  ,q x t , is ascertained. Then, the projected  

differential transform of  ,q x t  and its inverse projected differential transform are defined 

and represented respectively as: 

 
 

    

0

0

0

,1
,  

!

, ,  

l

l

t t

l

l

q x t
Q x l

l t

q x t Q x l t t







 
  

  



  




             (6) 
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The following properties (P1-P5) and theorems associated with the method of the solution are 

noted as follows in Table 1:     

  

Table 1: Some Basic Properties of the PDTM 

Property Original function form Projected Transform form 

P1      ,  ,  ,  a bq x t q x t q x t         ,  ,  ,  a bQ x h Q x l Q x l    

P2 
 

 * ,  
,  ,

n

n

q x t
q x t

t






 
     *! ,  ! ,  l z x l l n Q x l n    

P3 
 

 * ,  
,  

q x t
q x t

t






 
     *! ,  1 ! ,  1l Q x l l Q x l    

P4 
   

 * ,  
,  

n

n

q x t
q x t f x

x





    

 * ,  
,  

n

n

Q x l
Q x l f x

x





 

P5      2

*,  ,  ,q x t f x q x t
        * *

0

,  ,  ,  .
l

i

Q x l f x Q x i Q x l i


 
 

 

We refer the readers to [28] and the references therein for more details of the PDTM regarding non-

integer derivatives.  

 

2. 2 Preliminaries Note 

The power of the differential operator is known, in fractional calculus, to be a real or complex 

integer. Hence the definitions as follows: 

Definition 1: [28] Suppose ( )h x  is defined for 0x   , and      and  D J   are differential 

and integration operators respectively, then, in gamma sense, the fractional derivative of ( )h x

of order R  is defined as: 

 

 

1( )
( ) =

1

k
kd h x

D h x x
dx k


 

 


 


  

                           (7) 

where 

1

0

( ) ,  Re( ) 0

( 1) !, (1/ 2)

x nn e t dt n

n n 



 


   



     


 ,                                                       (8) 

while the Riemann-Liouville (RL) and Caputo fractional derivatives are respectively defined 

as:  

 

 ( )
( )

d J h x
D h x

dx

  







                          (9) 

 ( )
( ) ,  1 ,  

J d h x
D h x R

dx

  




   



                         (10) 

3.  Applications 

 

Here, the considered method is applied to the derived model in (5) for 0w  ; hence, we have:  
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1 1 1 1

, , 1 , 1 , 1,2,...
1 2 2

,0 ,   0 1.w

j
M w j r M x j M x j rM j

j

M w Be K


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




      
               


   

 

                                                                                                                                         (11) 

Here  M   signifies the projected differential transform of  Q  .  Hence, Using (11), the solution to 

(5) is easily computable via the following: 

       

 
  

 
   

0 1

2 2

1

, , ,

1 1 1 1
           , 1 , 1 .

1 2 2

i w i

i i

w i

i

Q w M w i Be K M w i

j
Be K r M x j M x j rM

j

 



  


  



 


 






   

       
           

      

 



        

                                                                                           (12)  

4.  Conclusions 

 

This research initiated the formulation of the Projected Differential Transformation Method (PDTM) 

for approximate-analytical approaches to the linear form of the Barrier Option Pricing Model in the 

framework of the classical Black-Scholes equation. The problem has been solved without a variable-

discretizing call. The result obtained suggested that the PDTM was efficient and accurate.  The results 

were presented in a series form with fewer interventions in the computational period. Therefore the 

method is recommended for application in applied sciences for strongly nonlinear differential and 

other associated financial models.  
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