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Abstract. This paper applies the novel Successive Approximation Method (SAM) for the 

solution of the quadratic Logistic Differential Model (LDM). To confirm the reliability of 

the method, illustrative examples are considered, and it is remarked that the approximate-

analytical solutions of the considered cases are computed with ease. The proposed 

technique is used directly, without transformation, discretization, linearization, or any 

restrictive assumptions.  
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1. Introduction 

A logistic function is a solution to a conventionally expressed differential equation in mathematics 

referred to as Logistic Differential Model (LDM). In contrast to exponential functions, logistic functions 

take into account the restrictions that preclude unbounded resources [1-3]. This sort of model is also used 

in chess ratings, cancer therapy (such as the modeling of tumor progression), economics, and the study of 

language adoption. This concept is implausible since the environment constrains population growth. The 

general form of the LDM is given as: 
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where  ,N N x t  is the population size of the species at time t ,  r  denotes the rate of growth in the 

absence of limited resources, and K  denotes the carrying capacity or the maximum population that the 

ecosystem can support indefinitely. 

This research aims to use the SAM to solve the Logistic Differential Model (LDM). Consequently, the 

goals are to apply SAM to the logistic differential equation and compare the results obtained using SAM 

to the exact solutions (if any) of the Logistic differential model. Although, in this respect, numerical 

techniques have been applied for solving dynamical models (equations) and other differential models [5-

15]. 

Numerous strategies for obtaining an exact or numerical solution to ordinary or partial differential models 

have lately been presented by several solution specialists [16-26].  In this present work, an innovative 

technique known as the Successive Approximation Method (SAM) is used to solve LDM. 

2.  Remark on Continuity Condition and the Proposed SIM 

 

The method of solution referred to as Successive Approximation Method (SAM) is introduced here, in 

line with some basic preliminaries.  

 

2.1 Lipschitzian Continuity Condition 

Let ( , )f t y
 
be given function, so ( , )f t y satisfies a Lipchitz condition with respect to y  in a certain 

region referred to as D  in the XY-plane, if there exists a non-negative constant  , such that  

( , ) ( , )a b a bf t y f t y y y     

whenever ( , at y ) and ( , )bt y  are in D , and   is called the Lipchitz constant. 

 

2.2  Overview of the Successive Iteration Method 

Suppose a first-order non-linear ordinary differential equation (ODE) is given as follows with an initial 

condition: 
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dy I    denotes a one-fold integral operator w.r.t. a concerned variable; thus, by direct 

integration of both sides (2.1) over  0 ,  t t , we have: 
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This implies that: 
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By iteration, we substitute 1 1( ) ( )n ny t y t y    and ( )n ny s y
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Therefore, (2.3) becomes; 
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3.  Method and Model Discussed 

This part discusses the proposed method and the Logistic model, as formulated based on some 

assumptions. Case examples are also considered via the SAM. 

CASE I: Consider the following version of the LDE: 
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whose exact solution is: 
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Equation (4.1) is rewritten as follows: 
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Applying the SIM to (4.2), give the following relation: 
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Thus, we obtained  the following iteratively: 
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The result obtained in (3.5) is a five-term approximate solution of the considered case. This is consistent 

with the analytical solution in [2]. However, the technique shown here seems to be simpler and easy. 

Figures 1-2 illustrate the approximate and exact solutions. 

 
Figure 1: SIM 8-term Approximate solution (Case I) 

 

Figure 2: Exact solution (Case I) 
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4.  Conclusions 

The Successive Approximation Method (SAM) was successfully employed to solve a variety of Logistic 

Differential Models in this article. The SAM that is being provided is computer-friendly and has a 

straightforward premise. SAM's results are quite comparable to those of other iterative techniques that 

have been studied in the literature. SAM also delivers more accurate numerical solutions for non-linear 

situations. The SAM is a handy tool in finding the solutions of the Logistic Differential Model since it 

does not need a lot of computer memory, rigorous, restrictive assumptions, or discretization processes. 
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