PAPER • OPEN ACCESS

SAM approximate solutions of some evolution equations

To cite this article: S. O. Edeki et al 2022 J. Phys.: Conf. Ser. 2199012009

View the article online for updates and enhancements

You may also like

- Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy Jason P Killgore and Donna C Hurley
- An Empirical Representation of a Physica Model for the ISM [C ii], CO, and [C i] Emission at Redshift 1 z 9 Shengqi Yang, Gergö Popping, Rachel S Somerville et al.

SOAR Adaptive Module (SAM): Seeing Improvement with a UV Laser Andrei Tokovinin, Rolando Cantarutti, Roberto Tighe et al.

ECS Plenary Lecture featuring
Prof. Jeff Dahn,
Dalhousie University

SAM approximate solutions of some evolution equations

S. O. Edeki ${ }^{1}$, V. O. Udjor ${ }^{2}$, G.O. Akinlabi ${ }^{1}$, C. Achudume ${ }^{3}$
${ }^{*}$ Department of Mathematics, Covenant University, Ota, Nigeria
${ }^{2}$ SBU, Covenant University Ota, Nigeria
${ }^{3}$ Department of Computer Science and Mathematics, Evangel University, Akaeze, Ebonyi State, Nigeria
Contact Emails: soedeki@yahoo.com; voudjor17@gmail.com

Abstract

The Successive Approximation Method (SAM) is introduced in this research to solve the evolution equations. These approximate-analytical solutions of the considered cases are computed with ease. The proposed technique is used directly, without transformation, discretization, linearization, or any restrictive assumptions.

Keywords: Non-linear evolution model, approximate solutions; Transform method, SAM

1. Introduction

Differential equations may be used to simulate a variety of physical processes, the majority of which are non-linear. A differential law governing a system's development (evolution) through time may be viewed as an evolution equation. The phrase (evolution equation) has no precise definition, and its meaning is determined not only by the equation but also by the description of the issue for which it is applied. The ability to construct the solution from a predefined starting condition, which may be taken as a description of the system's initial state, is typical of evolution equations [1-3].
We must rely on numerical/iterative approaches since relatively few non-linear problems have exact analytical solutions. SAM is straightforward with computer programs like Maple, SageMath, and Mathematica. It produces results that are in excellent agreement with other approaches and need few iterations in many circumstances. We employ SAM to solve some evolution equations in this article [4,5] and compare the results to known approaches, even graphical representations.
The analytic approaches for these problems are frequently limited and difficult to evaluate. Numerical approaches have been arbitrated more efficiently and reliable in solving the dynamical models (equations) and other differential models in this regard [6-12].
For a better understanding of evolution equations, in terms of derivations and formats, readers are referred to [1, 3].
Different solution experts have recently discussed numerous methods for finding an exact or numerical solution to ordinary or partial differential models [13-30]. In this work, a novel approach termed Successive Approximation Method (SAM) is applied to some non-linear evolution models.

2. Remark on Continuity Condition and the Proposed SIM

The method of solution referred to as Successive Approximation Method (SAM) is introduced here, in line with some basic preliminaries.

2.1 Lipschitzian Continuity Condition

Let $f(t, y)$ be given function, so $f(t, y)$ satisfies a Lipchitz condition with respect to y in a certain region referred to as D in the XY-plane, if there exists a non-negative constant ζ, such that

$$
\left|f\left(t, y_{a}\right)-f\left(t, y_{b}\right)\right| \leq \zeta\left|y_{a}-y_{b}\right|
$$

whenever $\left(t, y_{a}\right)$ and $\left(t, y_{b}\right)$ are in D, and ζ is called the Lipchitz constant.

2.2 Overview of the Successive Iteration Method

Suppose a first-order non-linear ordinary differential equation (ODE) is given as follows with an initial condition:

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=g(t, y) \tag{2.1}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Suppose $\int_{t_{0}}^{t}(\cdot) d y=I_{t_{0}}^{t}(\cdot)$ denotes a one-fold integral operator w.r.t. a concerned variable; thus, by direct integration of both sides (2.1) over $\left(t_{0}, t\right)$, we have:

$$
\left\{\begin{array}{l}
I_{t_{0}}^{t}(d y)=I_{t_{0}}^{t}(g(s, y)) \tag{2.2}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

This implies that:

$$
\left\{\begin{array}{l}
y(t)=y_{0}+I_{t_{0}}^{t}(g(s, y)) \tag{2.3}\\
y=y(t)
\end{array}\right.
$$

By iteration, we substitute $y(t)=y_{n+1}(t)=y_{n+1}$ and $y_{n}(s)=y_{n}$
Therefore, (2.3) becomes;

$$
\left\{\begin{array}{l}
y_{n+1}=y_{0}+I_{t_{0}}^{t}\left(g\left(s, y_{n}\right)\right) \tag{2.4}\\
y=y(t)
\end{array}\right.
$$

3. Applications

In this section, some case examples of the GDE are considered via the proposed method in terms of solutions. For the effectiveness and efficiency of the technique, the results are presented graphically compared to their exact solutions.

Case I: Here, we consider a evolution equation [2]

$$
\left\{\begin{array}{l}
w_{t}+e^{t} w w_{x}+w w_{x x}=0 \tag{3.1}\\
w(x, 0)=x, w=w(x, t)
\end{array}\right.
$$

Equation (3.1) is rewritten as follows:

$$
\left\{\begin{array}{l}
w_{t}=-\left(e^{t} w w_{x}+w w_{x x}\right) \tag{3.2}\\
w(x, 0)=x, w=w(x, t)
\end{array}\right.
$$

Applying the SIM to (3.2), give the following relation:

$$
\begin{equation*}
\left\{w_{j+1}=w_{0}-I_{0}^{t}\left(\left(e^{t} w_{j}\left(w_{j}\right)_{x}+\left(w_{j}\right)\left(w_{j}\right)_{x x}\right)\right), j \geq 0\right. \tag{3.3}
\end{equation*}
$$

Thus, we obtained the following iteratively:

$$
\left.\left.\left.\begin{array}{rl}
w_{1}= & 2 x-\mathrm{e}^{t} x \\
w_{2}= & \frac{10 x}{3}-\frac{x \mathrm{e}^{3 t}}{3}+2 x \mathrm{e}^{2 t}-4 x \mathrm{e}^{t} \\
w_{3}= & \frac{323 x}{63}-\frac{100 \mathrm{e}^{t} x}{9}+\frac{41 x \mathrm{e}^{4 t}}{9}-\frac{88 x \mathrm{e}^{3 t}}{9}+\frac{40 x \mathrm{e}^{2 t}}{3}-\frac{x \mathrm{e}^{7 t}}{63}+\frac{2 x \mathrm{e}^{6 t}}{9}-\frac{4 x \mathrm{e}^{5 t}}{3} \\
w_{4}= & \frac{1793989 x}{238140}-\frac{104329 \mathrm{e}^{t} x}{3969}-\frac{10037 x \mathrm{e}^{9 t}}{1701}+\frac{209 x \mathrm{e}^{12 t}}{3402}-\frac{212 x \mathrm{e}^{11 t}}{567} \\
& +\frac{4796 x \mathrm{e}^{10 t}}{2835}-\frac{x \mathrm{e}^{15 t}}{59535}+\frac{2 x \mathrm{e}^{14 t}}{3969}-\frac{4 x \mathrm{e}^{13 t}}{567}-\frac{47060 x \mathrm{e}^{7 t}}{1323}+\frac{106496 x \mathrm{e}^{6 t}}{1701} \\
& -\frac{250486 x \mathrm{e}^{5 t}}{2835}+\frac{85825 \mathrm{e}^{8 t} x}{5292}+\frac{56212 x \mathrm{e}^{4 t}}{567}-\frac{147520 x \mathrm{e}^{3 t}}{1701}+\frac{32300 x \mathrm{e}^{2 t}}{567}
\end{array}\right\}, \begin{array}{l}
w_{5}= \\
\frac{158667664590038921 x}{14763939698944800}+\frac{81625772191 \mathrm{e}^{8 t} x}{21003948}+\frac{7885724887429 x \mathrm{e}^{10 t}}{2362944150} \\
\end{array}\right\} \frac{373846811591 x \mathrm{e}^{15 t}}{1181472075}+\frac{49673592803 x \mathrm{e}^{14 t}}{78764805}-\frac{659728799909 x \mathrm{e}^{13 t}}{585109980}-\frac{1445126508395 x \mathrm{e}^{9 t}}{378071064}\right)
$$

$$
\vdots
$$

The result obtained in (4.6) is consistent with the analytical solution in [2]. However, the technique shown here seems to be simpler and easy. Figures 1-2 illustrate the approximate and exact solutions

Figure 1: SIM 5-term Approximate solution (Case I)

Figure 2: SIM 6-term Approximate solution (Case I)

Case II: Here, we consider a evolution (regularized long-wave) equation [2, 4]

$$
\left\{\begin{array}{l}
w_{t}-w_{x x t}+\left(\frac{w^{2}}{2}\right)_{x}=0, x \in(-\infty, \infty), t>0 \tag{3.4}\\
w(x, 0)=x, w=w(x, t)
\end{array}\right.
$$

Equation (3.4) is rewritten as follows:

$$
\left\{\begin{array}{l}
w_{t}=w_{x x t}-\left(\frac{w^{2}}{2}\right)_{x} \tag{3.5}\\
w(x, 0)=x, w=w(x, t)
\end{array}\right.
$$

Applying the SIM to (3.5), give the following relation:

$$
\begin{equation*}
\left\{w_{j+1}=w_{0}-I_{0}^{t}\left(\left(\left(w_{j}\right)_{x x t}-\left(\frac{\left(w_{j}\right)^{2}}{2}\right)_{x}\right)\right), j \geq 0\right. \tag{3.6}
\end{equation*}
$$

Thus, we obtained the following iteratively:
$w_{0}=x$,
$w_{1}=x(-t+1)$,
$w_{2}=x\left(1-\frac{1}{3} t^{3}+t^{2}-t\right)$,
$w_{3}=x\left(1-\frac{1}{63} t^{7}+\frac{1}{9} t^{6}-\frac{1}{3} t^{5}+\frac{2}{3} t^{4}-t^{3}+t^{2}-t\right)$,
$w_{4}=x\binom{-\frac{1}{59535} t^{15}+\frac{1}{3969} t^{14}-\frac{1}{567} t^{13}+\frac{1}{126} t^{12}-\frac{5}{189} t^{11}+\frac{22}{315} t^{10}}{-\frac{86}{567} t^{9}+\frac{71}{252} t^{8}-\frac{29}{63} t^{7}+\frac{2}{3} t^{6}-\frac{13}{15} t^{5}+t^{4}-t^{3}+t^{2}-t+1}$
Thus, the five-term solution of case II is given as:

$$
w(x, t)=x\left(\begin{array}{l}
\frac{13}{315059220} t^{28}-\frac{2}{6751269} t^{27}+\frac{1}{595350} t^{26}-\frac{5309}{675126900} t^{25}+\frac{16927}{540101520} t^{24} \\
-\frac{2447}{22504230} t^{23}+\frac{557}{1666980} t^{22}-\frac{207509}{225042300} t^{21}+\frac{16511}{7144200} t^{20}-\frac{162179}{30541455} t^{19} \\
+\frac{2588}{229635} t^{18}+\frac{43363}{1058400} t^{16}-\frac{1080013}{48580560} t^{17}-\frac{1}{109876902975} t^{31}+\frac{1}{3544416225} t^{30} \\
-\frac{1}{236294415} t^{29}-\frac{63283}{893025} t^{15}+\frac{1019}{8820} t^{14}-\frac{13141}{73710} t^{13}+\frac{17779}{68040} t^{12}-\frac{1477}{4050} t^{11}+\frac{27523}{56700} t^{10} \\
-\frac{3497}{5670} t^{9}+\frac{943}{1260} t^{8}-\frac{13}{15} t^{7}+\frac{43}{45} t^{6}-t^{5}+t^{4}-t^{3}+t^{2}-t+1
\end{array}\right)
$$

which agrees with the solution obtained using the new iteration method-NIM [2], and the variational iteration method-VIM [4], even in a faster convergence manner.

4. Conclusions

In this article, the Successive Approximation Method (SAM) was used successfully to solve a number of non-linear (evolution) equations. The presented SAM is computer-friendly and has a simple concept. The findings of SAM are quite similar to those of other iterative approaches in the literature. In addition, for non-linear problems, SAM provides more accurate numerical solutions. It also does not need a lot of computer memory, stringent or restricting assumptions, or discretization techniques.

Acknowledgment

CUCRID unit of Covenant University is highly cherished for all forms of support.

References

[1] Hajji M. A., Al-Khaled K. Two reliable methods for solving non-linear evolution equations. Appl. Math. Comput. 186 (2007) 1151-1162.
[2] S. Bhalekar, V. Gejji, Solving Evolution Equations Using a New Iterative Method, (2009), Numerical Methods for Partial Differential Equations DOI: 10.1002/num. 20463.
[3] John K. Hunter (2006), Non-linear Evolution Equations, pg 1-76. https://www.math.ucdavis.edu/~hunter/notes/nonlinev.pdf
[4] Ganji D.D., Tari H., Bakhshi Jooybari M. Variational iteration method and homotopy perturbation method for non-linear evolution equations. Comput. Math. Appl. 54 (2007), 1018-1027.
[5] Ganji D.D., Sadighi A., Khatami I. Assessment of two analytical approaches in some nonlinear problems arising in engineering sciences. Physics Letters A 372 (2008) 4399-4406.
[6] Yildiray Keskin, Galip Oturanc Application of Reduce Differential Transformation Method for solving Gas Dynamics Equation, Int. Contemp. Sciences, 5(22) (2010), 1091-1096.
[7] Daftardar-Gejji V., Jafari H. An iterative method for solving non linear functional equations. J. Math. Anal. Appl. 316 (2006) 753-763.
[8] Bhalekar S., Daftardar-Gejji V. New Iterative Method: Application to Partial Differential Equations. Appl. Math. Comput. 203 (2008) 778-783.
[9] Bildik N., Bayramoglu H. The solution of two dimensional non-linear differential equation by the Adomian decomposition method. Appl. Math. Comput. 163 (2005) 519-524.
[10] Edeki S.O. Onyemekara, K. C. New decomposition method for the solutions of linear Schrödinger equation, (2021), Journal of Physics: Conference Series 1734(1),012002.
[11] Zang B. Q., Wu Q. B., Luo X. G. Experimentation with two-step Adomian decomposition method to solve evolution models. Appl. Math. Comput. 175 (2006) 1495-1502.
[12] Ogundile, O.P., Edeki, S.O, Iterative methods for approximate solution of the OrnsteinUhlenbeck process with normalised brownian motion, 2021 Journal of Physics: Conference Series 1734(1),012015.
[13] Matinfar M., Saeidy M, Mahdari M. and Rezael M., Variational Iteration Method for exact solution of gas dynamics equation using He's Polynomials, Bulletin of Mathematical Analysis and Applications, 3(3) (2011), 50-55.
[14] Edeki S.O., Ugbebor O.O., and Owoloko E.A., He's polynomials for analytical solutions of the Black-Scholes pricing model for stock option valuation, Proceedings of the World Congress on Engineering 2016, Vol II, WCE 2016, June 29 - July 1, 2016, London, U.K.
[15] Ablowitz M. J., Herbst B.M., Schober C., Constance on the numerical solution of the sineGordon equation. I: Integrable discretizations and homoclinic manifolds, J. Comput Phys 126, (1996), 299-314.
[16] Edeki S. O., Akinlabi G. O., and Adeosun S. A., On a modified transformation method for exact and approximate solutions of linear Schrödinger equations, AIP Conference Proceedings 1705, 020048 (2016); doi: 10.1063/1.4940296.
[17] Akinlabi G.O. and Edeki S.O., On Approximate and Closed-form Solution Method for Initial-value Wave-like Models, International Journal of Pure and Applied Mathematics, 107(2), (2016), 449-456.
[18] Edeki S. O., and Akinlabi G. O. , Coupled method for solving time-fractional navier stokes equation, International Journal of Circuits, Systems and Signal Processing, 12 (2017), 27-34.
[19] Wazwaz A.M., Mehanna M.S., The combined Laplace-Adomian method for handling singular integral equation of heat transfer, Int J Nonlinear Sci., 10 (2010), 248-52.
[20] Edeki S. O., Akinlabi G. O. and Adeosun S.A. , Analytic and Numerical Solutions of TimeFractional Linear Schrödinger Equation, Comm Math Appl, 7(1), (2016), 1-10.
[21] Adeyeye F. J, Igobi D. K and Ibijola E. A, On solving boundary value problem using Adomian decomposition method, International Journal of Contemporary Mathematical Sciences, 10 (5) (2015), 197-207.
[22] Dhunde R. R. and Waghmare G. L., Solutions of Some Linear Fractional Partial Differential Equations In Mathematical Physics, Journal of the Indian Mathematical Society, Vol. 85, Nos. (3), (2018).
[23] Edeki S.O., P.O. Ogunniyi, O. F. Imaga, Coupled method for the solution of a onedimensional heat equation with axial symmetry, 2021 Journal of Physics: Conference Series 1734(1),012046.
[24] Saadatmandi A., Dehghan M., Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differential Eq. (2009).
[25] Mohanty R.K, Jain M.K, George K.. On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients, J. Comp. Appl. Math. 72 (1996), 421-431.
[26] Adeyeye F. J., Igobi D. K., \& Ibijola E. A., A New Hybrid in the Non-linear Part of Adomian Decomposition Method for Initial Value Problem of Ordinary Differential Equation, Journal of Mathematics Research, 7 (1), (2015), 102-109.
[27] Oghonyon J. G., Okunuga S. A., Bishop S. A., A 5-step block predictor and 4-step corrector methods for solving general second order ordinary differential equations, Global Journal of Pure and Applied Mathematicsll (5), 2015, 3847-386.
[28] Edeki S.O., Jena, R.M., Ogundile, O.P., Chakraverty, S. PDTM for the solution of a timefractional barrier option Black-Scholes model, 2021, Journal of Physics: Conference Series 1734(1),012055.
[29] Singh J., Kumar D. and Rathore S., Application of Homotopy Perturbation Transform Method for Solving Linear and Nonlinear Klein-Gordon Equations, Journal of Information and Computing Science, 7 (2), (2012), 131-139.
[30] Oghonyon J. G., Omoregbe N. A. Bishop S.A., Implementing an order six implicit block multistep method for third order ODEs using variable step size approach, Global Journal of Pure and Applied Mathematics 12 (2), 2016, 1635-1646.

