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Abstract. The Successive Approximation Method (SAM) is introduced in this 

research to solve the evolution equations. These approximate-analytical solutions of 

the considered cases are computed with ease. The proposed technique is used directly, 

without transformation, discretization, linearization, or any restrictive assumptions. 
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1.  Introduction 

 

Differential equations may be used to simulate a variety of physical processes, the majority of which 

are non-linear. A differential law governing a system's development (evolution) through time may be 

viewed as an evolution equation. The phrase ( evolution equation) has no precise definition, and its 

meaning is determined not only by the equation but also by the description of the issue for which it is 

applied. The ability to construct the solution from a predefined starting condition, which may be taken 

as a description of the system's initial state, is typical of evolution equations [1-3]. 

We must rely on numerical/iterative approaches since relatively few non-linear problems have exact 

analytical solutions. SAM is straightforward with computer programs like Maple, SageMath, and 

Mathematica. It produces results that are in excellent agreement with other approaches and need few 

iterations in many circumstances. We employ SAM to solve some evolution equations in this article  

[4, 5] and compare the results to known approaches, even graphical representations. 

The analytic approaches for these problems are frequently limited and difficult to evaluate. Numerical 

approaches have been arbitrated more efficiently and reliable in solving the dynamical models 

(equations) and other differential models in this regard [6-12].  

For a better understanding of evolution equations, in terms of derivations and formats, readers are 

referred to [1, 3]. 

Different solution experts have recently discussed numerous methods for finding an exact or 

numerical solution to ordinary or partial differential models [13-30]. In this work, a novel approach 

termed Successive Approximation Method (SAM) is applied to some non-linear evolution models. 
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2.  Remark on Continuity Condition and the Proposed SIM 

 

The method of solution referred to as Successive Approximation Method (SAM) is introduced here, in 

line with some basic preliminaries.  

 

2.1 Lipschitzian Continuity Condition 

Let ( , )f t y
 
be given function, so ( , )f t y satisfies a Lipchitz condition with respect to y  in a certain 

region referred to as D  in the XY-plane, if there exists a non-negative constant ,  such that  

( , ) ( , )a b a bf t y f t y y y     

whenever ( , at y ) and ( , )bt y  are in D , and   is called the Lipchitz constant. 

2.2  Overview of the Successive Iteration Method 

Suppose a first-order non-linear ordinary differential equation (ODE) is given as follows with an 

initial condition: 

  

0 0

( , ),     

 ( )

dy
g t y

dt

y t y





 

                                                                                                         (2.1) 

Suppose    
0

0

t

t

t

t

dy I    denotes a one-fold integral operator w.r.t. a concerned variable; thus, by 

direct integration of both sides (2.1) over  0 ,  t t , we have: 

   
0 0

0 0
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t t

t tI dy I g s y
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This implies that: 

 

 
0

0( ) ( , ) ,
t

ty t y I g s y

y y t
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                                                                   (2.3) 

By iteration, we substitute 1 1( ) ( )n ny t y t y    and ( )n ny s y
 

 

Therefore, (2.3) becomes; 

  
 

 
0

1 0 ( , ) ,
t

t

n ny y I g s y

y y t


  




                                        (2.4) 

3. Applications 

 

In this section, some case examples of the GDE are considered via the proposed method in terms of 

solutions. For the effectiveness and efficiency of the technique, the results are presented graphically 

compared to their exact solutions. 

 

Case I: Here, we consider a evolution equation [2]  

   

0,

,0 ,  ,

t

t x xxw e ww ww

w x x w w x t

   


 

         (3.1) 
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Equation (3.1) is rewritten as follows: 

 
   

,

,0 ,  ,

t

t x xxw e ww ww

w x x w w x t

   


 

         (3.2) 

Applying the SIM to (3.2), give the following relation: 

       1 0 0 ,   0.t t

j j j j jx xx
w w I e w w w w j           (3.3) 

Thus, we obtained  the following iteratively: 
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The result obtained in (4.6) is consistent with the analytical solution in [2]. However, the technique 

shown here seems to be simpler and easy. Figures 1-2 illustrate the approximate and exact solutions 

. 
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Figure 1: SIM 5-term Approximate solution (Case I) 

 

 

Figure 2: SIM 6-term Approximate solution (Case I) 
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Case II: Here, we consider a evolution (regularized long-wave) equation [2, 4]  

 

   

2

0,  , ,  0,
2

,0 ,  , .

t xxt

x

w
w w x t

w x x w w x t

  
        

 


 

       (3.4) 

Equation (3.4) is rewritten as follows: 

   

2

2

,0 ,  , .

t xxt

x

w
w w

w x x w w x t

  
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 

         (3.5) 

Applying the SIM to (3.5), give the following relation: 
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 

2
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2
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j j xxt

x

w
w w I w j
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                 

      (3.6) 

Thus, we obtained  the following iteratively: 
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Thus, the five-term solution of case II is given as: 
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
 which agrees with the solution obtained using the new iteration method-NIM [2], and the variational 

iteration method-VIM [4], even in a faster convergence manner. 
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4. Conclusions 

In this article, the Successive Approximation Method (SAM) was used successfully to solve a number 

of non-linear (evolution) equations. The presented SAM is computer-friendly and has a simple 

concept. The findings of SAM are quite similar to those of other iterative approaches in the literature. 

In addition, for non-linear problems, SAM provides more accurate numerical solutions. It also does 

not need a lot of computer memory, stringent or restricting assumptions, or discretization techniques. 
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