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Abstract Most of the real-life problems experienced in the industry these days cannot be 

expressed as a single differential equation but as a system of differential equations. Such structures 

of linear partial differential models are considered in this work with the aid of the Laplace 

Adomian decomposition method (LADM) in terms of solutions. Various examples are taken into 

consideration. The results are easily obtained, are in good agreement when compared to their exact 

forms. In addition, the proposed method seems effective and efficient; the solutions are graphically 

presented. 

Keywords: Differential models, Laplace Transform, Adomian decomposition, Approximate solution 

 

1. Introduction 

A differential equation is usual within the mathematics field; this study deals with linear partial 

differential equations systems. Most physical problems cannot be described with a single differential 

equation that has one unknown [1-4]. In order to obtain approximate or theoretical solutions to various 

forms of differential equations or systems, in the case of the solution exiting, reliable solution approaches 

are needed. Several researchers have developed iterative methods or modified existing methods for 

efficiency and reliability. These include the New Iterative Method (NIM),  Picard Iterative Method (PIM),  

Variational Iterative Method (VIM), ADM, Homotopy Perturbation Method (HPM), Boundary Value 

Methods (BVMs), and so on  [5-10]. The majority of natural occurrences are linear and non-linear. A 

good number of researchers have used the Laplace decomposition algorithm and other solution methods 

[11-19]. This work aims to apply the precise and powerful method for solving a system of linear partial 

differential equations. Accordingly, the objectives are to: solve systems of linear partial differential 

equations via the Laplace Adomian decomposition method; and compare the result with already existing 

exact solutions. 

2.  The Adomian Decomposition Method 

The Adomian decomposition method is a step-by-step numerical method that can be used to resolve 

differential equations. This method is iterative in nature with an algorithm.  

We would examine a differential equation of the form. 
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( , ) ( , ) ( , ) ( , )L x y R x y N x y q x y                                                                                    (2.1) 

where L  is a linear differential operator, R  is taken to be the differential operator less than  ,  

More often than not,  .
n

n

d
L

dx


 
is the nth order differential operator, which means that its inverse 

1L
 is 

the nth order integration operator. 

Therefore, we would have: 

 1 1( , ) ( , ) ( , ) ( , )L L x y R x y N x y L q x y                                                                       (2.2) 

1 ( , )L L x y t                                                                                                                        (2.3) 

for   
signifies the initial values. 

Substituting (3.3) in (3.2) we have, 

  1( ) ( , ) ( , )y y L N x y R x y                                                                      (2.4) 

where 
1( )y L g    which signifies a function obtained by integrating the source term with respect to 

the initial condition(s). 

The ADM simplifies the solution  y t
 
in series form 

 
0

n

n

y y





     

                                                                      (2.5) 

The non-linear term is expressed as: 

  
0

, 0m

m

Nh x t A




 
     

                                                         (2.6) 

 
0 0

1
. ,  0

!

m
k

m km
k k

d
A f t x y m

m dx



 

  
   

  
                                                                                 (2.7) 

 
1

0 0 0

( )n n n

n n n

y y L R y A
  



  

  
    

  
                                                                                    (2.8) 

By recursion relation, we have 

    0y x a x                                                                                                                   

    1

1 , 0n n ny x L Ry A n

      

Hence, the solution is 

 

   
0

0

       lim

M

k

k

n
n

n

y x y x

y









 




    





 

3. The Solution method Laplace ADM (LADM) 

The LADM is a semi-analytical method that combines the ADM and the Laplace transform method. With 

little iteration, LADM solves linear and nonlinear differential equations. Let us examine the general first-

order non-linear PDE of the form: 

 
 

 

,

,

Lu Ru Nu q x y

u u x y

  




                                                                             (3.1) 
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Rearranging (3.1) we have, 

 ( , ) ( )Lu q x y Ru Nu                                                                                                 (3.2) 

Taking the inverse Laplace transform of (3.2) 

        1 1 1 1,0u u x L s L q L s L Nu Ru       ,  , ,q q x y                       (3.3) 

Taking the inverse Laplace transform of (3.3) 

     1 1,0u u x L s L Nu Ru                                                                                              (3.4) 

LADM puts forward its solution as an infinite series as shown in (3.4) 

    
0

, ,n

n

u u u u x y




                                                                                                             (3.5) 

    0 1 2

0

, , , ,...,b n

b

Nu x y A u u u u




                                                                                           (3.6) 

where bA represents the Adomian polynomials of the form 

 
0 0

1
, , 0

!

b
k

b kb
k

d
A N t h b

b d







 

  
   

  
                                                                                   (3.7) 

Putting (3.5) and (3.6) in (3.7) gives 

         1 1

0

, ,0 ,
b

ub x y u x L s L q x y Q


 



                                                                    (3.8) 

where 

  1

0 0

1
,b b

b b

Q L L A R u x y
s

 


 

    
    

    
                                                                                 (3.9)    

From (3.9) the solution can be obtained through the following recurrence relations 

      1 1

0 , ,0u L s L u x y u x                                                                                          (3.10) 

   1

1

1
, 0m m mu L L Ru NA m

s





 
    

 
                                                                              (3.11) 

While  ,u x y is given as: 

    
0

, lim ,
j

n
j

n

u x y u x y




                                                                                                         (3.12) 

4. LADM and Systems of Two Linear PDEs 

In this section, the linear partial differential systems would be solved using the proposed LADM. 

 

4.1  Case I  Consider the linear system 

0

0

x t

x t

q p

p q

 


 
                                                   (4.1) 

such that 

 
   

   

,0 exp

,0 exp

p x x

q x x




 
                                      (4.2) 

and the the exact solution are: 
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         

         

, exp cosh exp sinh

, exp osh exp sinh

p x t x t x t

q x t x c t x t

  


  
           (4.3) 

 

Solution to Case I   

The system in (4.1) can be re-expressed as: 

       ,0 , ,0 ,  , ,  , ,  

t x

t x

x x

z

p q

q p

h
q x e p x e p p x t q q x t h

z




  


 


     
 

                    (4.4)
 

The Laplace transform of (4.4), with L H and 
1 1L H   yields: 

   

   

t x

t x

H p H q

H q H p

 


 
                          (4.5)

 

      

      

1
, ,0

  
1

, ,0

x

x

p x s u x H q
s

q x s q x H p
s


  

 
   


            (4.6)
 

Taking the inverse LT of both sides of (4.6) gives: 

     

     

1

1

1
, ,0

1
, ,0

x

x

p x t p x H H q
s

q x t q x H H p
s





  
    

 


       

           (4.7)

 

By ADM, the solution is given as: 

 
0

0

,

.

n

n

n

n

p p

q q














 





                            (4.8) 

Thus, (4.7) becomes 

 

 

1

0 0

1

0 0

1
,0

1
,0

n n

n n x

n n

n n x

p p x H H q
s

q q x H H p
s

 


 

 


 

    
      

     


    
     

    

 

 

                        (4.9) 

Comparing the terms in (4.9) gives the following recurrence relations 

 

  

0

1

1

,0

1

x

k k x

p p x e

p H H q
s





  

  

   
 
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 

  

0

1

1

,0

1

x

k k x

q q x e

q H H p
s







  

  

   
 

 

When 0k  , we have 

    

    

1

1 0

1

1 0

1
exp

1
exp

x

x

p H H q t x
s

q H H p t x
s





  
     

 


        

 

When 1k  , we have 

    

    

2
1

2 1

2
1

2 1

1
exp

2!

1
exp

2!

x

x

t
p H H q x

s

t
q H H p x

s





  
    

 


 
      

    

When 2k  , we have 

    

    

3
1

3 2

3
1

3 2

1
exp

3!

1
exp

3!

x

x

t
p H H q x

s

t
q H H p x

s





  
     

 


 
     

 

       

 

   

   

0 1 2

2 3

,

               exp 1 exp
2! 3!

              e cosh e sinh

n

x x

p x t p p p p

t t
x x t

t t


      

   

          
   


  

          (4.10) 

and 

       

 

   

   

0 1 2

2 3

     ,

               exp 1 exp
2! 3!

               e cosh e sinh

n

x x

q x t q q q q

t t
x x t

t t


     

   

          
   


  

                               (4.11) 

                     , exp cosh exp sinh ,  exp cosh exp sinhp q x t x t x t x t                         (4.12)  

Equation (4.11) denotes the LADM solution of case 1. These are plotted in Figures 1 to 4 in comparison 

with the exact solutions in (4.2). 
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Figure 1: Case 1 Approximate solution for ( , )p x t  

 

 
Figure 2: Case 1 Exact solution for ( , )p x t  
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Figure 3: Case 1 Approximate solution for ( , )q x t  

 
Figure 4: Case 1 Exact solution for ( , )q x t  

4.2 Case II 

The following linear system of PDE is considered 



ICORTAR 2021
Journal of Physics: Conference Series 2199 (2022) 012022

IOP Publishing
doi:10.1088/1742-6596/2199/1/012022

8

 

 
2 0

2 0

t x

t x

p p q

q q p

  


  
             (4.13)                    

 

such that: 

 
 

 

,0 sin 0

,0 cos 0

q x x

p x x

 


 
            (4.14) 

and  

 

     

sin

cos ,  , ,  ,

q x t

p x t q q x t p p x t

 


   
         (4.15)  

 

represents the exact solution.          

 

Solution to Case II:  

Following the same approach as in case 1, we obtained the following: 

   

 
0

0 1 2

2 3

2 3

    ,

               

               cos sin cos sin
2! 3!

               cos 1 sin
2! 3!

              cos (cos ) sin (sin )

n

n

n

p x t p

p p p p

t t
x t x x x

t t
x x t

x t x t






 


     



     

   
        
   


  



        (4.16) 

and  

       

 

   

0

0 1 2

2 3

     ,                

               

               sin 1 cos
2! 3!

               sin cos cos sin

n

n

n

q x t q

q q q q

t t
x x t

x t x t






 


     



              

  



                    (4.17) 

        , cos ,sinp q x t x t              (4.18) 

Equation (4.18) denotes the LADM solution of case II. These are plotted in Figures 5 to 8 in comparison 

with the exact solutions in (4.15). 
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Figure 5: Case 2 Exact solution for ( , )p x t  

 
Figure 6: Case 2 Approximate solution for ( , )p x t  
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Figure 7: Case 2 Exact solution for ( , )q x t  

 

 
Figure 8: Case 2 Approximate solution for ( , )q x t  

 

5.  Concluding Remark 

This research has successfully considered anproximate-analytical solutions of some certain partial 

differential models using a transform method termed Laplace Adomian decomposition technique 

(LADM). The approximate solutions obtained using the technique are compared to the exact solution 
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graphically, and the method yields the same result as the exact solution. Thus, the LADM is highly 

recommended for higher-order differential models in pure and applied.  

 

Acknowledgment  

The authors thank the CUCRID section of Covenant University for supporting this research. 
 

References 

[1] Abdul-Majid Wazwaz (2020). Partial Differential Equations and Solitary Waves Theory. 

[2] Agadjanov, Yusufoglu E. (2006). Numerical solution of Duffing equation by the Laplace 

decomposition algorithm, Appl. Math. Comput., Vol. 177, pp. 572-580.  

[3] Babolian, E., Biazar, J. and Vahidi, A. R. (2004). A New Computational Method for Laplace 

Transforms by Decomposition Method, J. Appl. Maths. Comput., Vol.150, pp. 841-846.  

[4] Biazar J., Goldoust F., (2013).  The Adomian Decomposition Method for the Black-Scholes 

Equation, 3rd International Conference on Applied Mathematics and Pharmaceutical Sciences, 

321-323.  

[5] Bobkov V.V., Faleichik B. V., Mandrik P. A., Repnikov V. I. (2009), Solving Stiff Problems 

using generalized Picard iteration. AIP Conference Proceedings 1168, 65 (2009); 

https://doi.org/10.1063/1.3241550. 

[6] Edeki, S. O., Anake, T. A., & Ejoh, S. A. (2019). Closed form root of a linear Klein-Gordon 

equation. Journal of Physics: Conference Series, 1299(1). https://doi.org/10.1088/1742-

6596/1299/1/012138 

[7] Edeki, S. O., Egara, F. O., Ogundile, O. P., & Braimah, J. A. (2020). Elzaki decomposition 

method for approximate solution of a one-dimensional heat model with axial symmetry. 

Proceedings - 2nd International Conference on Mathematics and Computers in Science and 

Engineering, MACISE 2020, September, 294–296.  

[8] Elgazery, N. S. (2008). Numerical solution for the Falkner-Skan equation, Chaos Solitons and 

Fractals,Vol. 35, pp. 738-746.  

[9] Haziqah, C., & Hussin, C. (2013). Solving System of Linear Differential Equations by Using 

Differential Transformation Method Solving system of linear differential equations by using 

differential transformation method. April. https://doi.org/10.1063/1.4801130. 

[10] Khuri, S. A. (2001). A Laplace Decomposition Algorithm Applied to a Class of Nonlinear 

Differential Equations, Journal of Applied Mathematics, Vol. 1, No.4, pp. 141-155.  

[11] Evans, D. J., Raslan, K. R. (2005). The adomain decomposition method for solving delay 

differential equations. International Journal of Computer Mathematics.,82,49-54. 

[12] Okoli Deborah Chikwado Matriculation Number : 15Cd03837. (2019). Solution Methods for 

One-Factor Bond Pricing Model By a Project Submitted To the Department of Mathematics, 

College of Science and Technology, Partial Fulfillment of the Requirements for the Award.  

[13] Sadiq, B. A. (2020). Solving Ordinary Differential Equations by means of series method. June. 

[14] Shah, R., Khan, H., Arif, M., & Kumam, P. (n.d.). Application of Laplace – Adomian 

Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial 

Differential Equations. https://doi.org/10.3390/e21040335 



ICORTAR 2021
Journal of Physics: Conference Series 2199 (2022) 012022

IOP Publishing
doi:10.1088/1742-6596/2199/1/012022

12

 

[15] Oghonyon, J.G., Agboola, O.O., Ogunniyi, P.O., Adesanya, A. O.  2018, Computing 

oscillating vibrations employing exponentially fitted block milne's device, International Journal 

of Mechanical Engineering and Technology 9(8), pp. 1234-1243. 

[16] Akinlabi, G.O. , Adeniyi R.B., Owoloko E.A., The solution of boundary value problems with 

mixed boundary conditions via boundary value methods}, International Journal of Circuits, 

Systems and Signal Processing, 12, (2018), 1-6. 

[17] Oghonyon, J.G., Okunuga, S.A.,, Omoregbe N.A., Agboola, O.O., 2015, A computational 

approach in estimating the amount of pond pollution and determining the long time behavioural 

representation of pond pollution model, Global Journal of Pure and Applied Mathematics 11(5), 

pp. 2773-2786. 

[18] Akinlabi, G.O., Adeniyi R.B., Sixth-order and fourth-order hybrid boundary value methods for 

systems of boundary value problems, WSEAS Transactions on Mathematics. 17 (2018), 258-

264. 

[19] Saeed R. K. and Rahman,  B. M. Adomian Decomposition Method for Solving System of Delay 

Differential Equation,  Australian Journal of Basic and Applied Sciences, 4 (8) (2010): 3613-

3621. 

 

 


