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Abstract— In this work, we establish conditions

for the existence of at least one solution for a p-

Laplacian third order integral and m-point boundary

value problem at resonance. The Ge and Ren exten-

sion of Mawhin’s coincidence theory will be used to

obtain existence results for the p-Laplacian problem

at resonance.
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point, integral boundary value problem, p-Laplacian.

1 Introduction

This work deals with the following p-Laplacian third or-
der integral and m-point boundary value problem at res-
onance

(φp(u
′′(t)))′ = w(t, u(t), u′(t), u′′(t)), t ∈ (0, 1), (1)

subject to the boundary conditions

φp(u
′′(0)) =

m∑
i=1

αi

∫ ξi

0

φp(u
′′(t))dt,

u′′(1) = 0, u′(1) = βu′(η),

(2)

where the function w : [0, 1] × R
3 → R is continuous,

φp(s) = |s|p−2s, p > 1, the inverse of φ−1
p is φq,

1
p+

1
q = 1,

0 < ξ1 < ξ2 < · · · < ξm < 1, β > 0, αi(1 ≤ i ≤ m) ∈ R

and η ∈ (0, 1). Since we require a nontrivial kernel for
our quasi-linear operator, the condition

∑m
i=1 αiξi = 1 is

critical. The integral in (2) is the Riemann-Stieltjes inte-
gral.
A boundary value problem Lu = u′′′(t) = 0 is said to be
at resonance if L is non-vertible else it is a non-resonance
problem where L is a linear operator. Since the estab-
lishment of the coincidence degree theory by Mawhin,
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for boundary value problems at ressonance [13], many
authors have studied resonant problems when the differ-
ential operator is linear (see [1, 3, 5, 6, 8, 9, 12]). When
the differential operator is nonlinear, like in p-Laplace
boundary value problems the Mawhin coincidence degree
theory fails while the extension of the theorem by Ge and
Ren [4] is used (see [7, 2, 15, 10] ).
Inspired by the above works, this paper uses the Ge and
Ren extension of the coincidence degree theory [4] to es-
tablish the existence of solutions for the problems (1)-(2)
at resonance.
The rest of the paper is organized as follows. Section 2
gives necessary definitions, lemmas and theorem that are
needed tor the work. In section 3, we obtain existence re-
sults for (1)-(2) while an example will be given in section
4 to corroborate our result.

2 Preliminaries

In this section, we will give necessary lemmas, definitions
and theorems.

Definition 1. Given two Banach spaces, U and Z with
norms ‖·‖U and ‖·‖Z respectively, a continuous operator

M : dom M ⊂ U → Z

is said to be quasi-linear if

(i) Im M is a closed subset of Z;

(ii) kerM is linearly homeomorphic to R
n, n < ∞.

Definition 2. ([10]) Let Ω ⊂ U be a bounded open
set with the origin σ ∈ Ω. The nonlinear operator Nλ :
Ω → Z, λ ∈ [0, 1] is said to be M -compact in Ω if there
exist Z1 ⊂ Z with dimZ1 = dimkerM and a continuous,
compact operator T : Ω × [0, 1] → U2 such that for λ ∈
[0, 1],

(i) (I −Q)Nλ ⊂ Im M ⊂ (I −Q)Z;

(ii) QNλu = 0, λ ∈ (0, 1) ⇔ QNu = 0, ∀u ∈ Ω;

(iii) T (·, 0) ≡ 0 and T (·, λ)|∑
λ
= (I − P )∑

λ
;
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(iv) M [P + T (·, λ)] = (I −Q)Nλ, λ ∈ [0, 1];

where U2 ∈ U is a complement space of kerM , i.e. U =
kerM⊕U2; P , Q are projectors such that kerM = Im P ,
Im Q = Z1, N = N1, and

∑
λ = {u ∈ Ω : Mu = Nλu}.

Lemma 3. [16] The following are true for φp:

1. ((i)) φp is continuous, invertible and monotonically
increasing. In addition, φ−1

p = φq and for q > 1 then
1
p + 1

q = 1;

(ii) For all y, z,≥ 0,

φp(y + z) ≤ φp(y) + φp(z), if 1 < p < 2,
φp(y + z) ≤ 2p−2(φp(y) + φp(z)), if p ≥ 2.

Theorem 1. ([4]) Let U and Z be Banach spaces,
and Ω ⊂ U a bounded open nonempty set. Also M :
dom M ⊂ U → Z is quasi-linear and Nλ : Ω → Z, λ ∈
[0, 1] is M -compact in Ω. Assume the following condi-
tions are satisfied

(i) Mu = Nλu for every (u, λ) ∈ [(dom M\ kerM) ∩
∂Ω]× (0, 1);

(ii) QNu = 0 for every u ∈ kerM ∩ ∂Ω;

(iii) deg(JQN,Ω ∩ kerM, 0) = 0, where J : Im Q →
kerM is a homeomorphism.

Then, the abstract equation Mu = Nu has at least one
solution in Ω.

Let

U = {u ∈ C2[0, 1] : φp(u
′′(t)) ∈ C1[0, 1], u(t) satisfies (2)}

where the norms ‖z‖∞ = max
t∈[0,1]

|x(t)| and ‖u‖ =

max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞} are defined on U .
Let Z = L1[0, 1] with the norm on Z denoted by ‖ · ‖1.
The quasi-linear operator M : dom M ⊂ U → Z will be
defined by

M : u �→ Mu = (φt(u
′′(t))′, t ∈ [0, 1],

where dom M =

{
u ∈ U ∩ C2[0,+∞) :

φp(u
′′(0)) =

m∑
i=1

αi

∫ ξi

0

φp(u
′′(t))dt, u′′(1) = 0, u′(1) =

βu′(η)
}
. Also, the nonlinear operator Nλ : U → Z, λ ∈

[0, 1] will be defined by

(Nλu)t = λq(t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

thus problem (1)-(2) may be written in the form

Mu = Nλu.

Lemma 2. If
∑m

i=1 αiξi = 1 then there exists
r ∈ {1, 2, . . . ,m− 1}, such that

m∑
i=1

αiξ
r+2
i = 0.

Proof. Since 0 < ξ1 < ξ2 < · · · < ξm < 1, and∑m
i=1 αiξi = 1 then there exists i ∈ [1,m] such that

αi = 0, hence
∑m

i=1 αi = 0. Assuming

m∑
i=1

αiξ
r+2
i = 0, r = 0, 1, . . . ,m− 2,

we have⎛
⎜⎜⎜⎝

ξ21 ξ22 · · · ξ2m
ξ31 ξ32 · · · ξ3m
...

...
. . .

...
ξm1 ξm2 · · · ξmm

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

α1

α2

...
αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .

Since

det

⎛
⎜⎜⎜⎝

ξ21 ξ22 · · · ξ2m
ξ31 ξ32 · · · ξ3m
...

...
. . .

...
ξm1 ξm2 · · · ξmm

⎞
⎟⎟⎟⎠

= ξ21ξ
2
2 · · · ξ2m

⎛
⎜⎜⎜⎝

1 1 · · · 1
ξ1 ξ2 · · · ξm
...

...
. . .

...
ξm−2
1 ξm−2

2 · · · ξm−2
m

⎞
⎟⎟⎟⎠

=

(
m∏
i=1

ξ2

) ∏
1≤i<j≤m

(ξj − ξi) = 0,

then, α1 = α2 = · · · = αm = 0, which contradicts∑m
i=1 αi = 0. Hence, Lemma 2 holds.

Lemma 3. If
∑m

i=1 αiξi = 1, then, the operator M :
dom M ⊂ U → Z is quasi-linear.

Proof. By simple calculation, we see that

kerM = {u ∈ dom M : u = d, d ∈ R}.

We will now show that

Im M =

{
y ∈ Z :

m∑
i=1

αi

∫ ξi

0

∫ x

0

y(v)dvdx = 0

}
. (3)

The p-Laplacian problem

φp(u
′′(t)))′ = y(v) (4)

has a solution u(t) that satisfies (2) when

m∑
i=1

αi

∫ ξi

0

∫ x

0

y(v)dvdx = 0. (5)
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The solution of (4), u(t) that satisfies (2) can be written
as

u(t) = u(1)+u′(1)(t−1)−
∫ 1

t

∫ 1

s

φq

(∫ 1

x

y(v)dv

)
dxds.

(6)
Applying the boundary condition (2) and

∑m
i=1 αiξi = 1

to (6) we obtain

m∑
i=1

αi

∫ ξi

0

∫ x

0

y(v)dvdx = 0,

which satisfies (3) and

u(t) = d+
β(t− 1)

1− β

∫ 1

η

φq

∫ 1

x

y(v)dvdxs

−
∫ 1

t

∫ 1

s

φq

(∫ 1

x

y(v)dv

)
dxds,

where d is an arbitrary constant and u(t) is the solution
to (4) satisfying (2). Since kerM = 1 < ∞ and
M(U ∩ dom M) ⊂ Z is closed, the operator M is
quasi-linear.

Lemma 4. The nonlinear operator Nλ is M -compact, if
w ∈ C([0, 1]× R

3,R).

Proof. We define projectors P : U → U1 as Pu = u(1)
for all u ∈ U and Q : Z → Z1 as

Qy =
(r + 1)(r + 2)∑m

i=1 αiξr+2

( m∑
i=1

αi

∫ ξi

0

∫ x

0

y(v)dvdx

)
tr,

t ∈ [0, 1], ∀ y ∈ Z, where Z1 is the complement space of
Im M in Z. Let Ω ⊂ U be bounded, then we will define
T : Ω× [0, 1] → kerP as

T (u, λ)(t) =
β(t− 1)

1− β

∫ 1

η

(
φq

∫ 1

x

[(I −Q)Nλu](v)dv

)
dx

−
∫ 1

t

∫ 1

s

φq

(∫ 1

x

[(I −Q)Nλu](v)dv

)
dxds, t ∈ [0, 1].

(7)

T (·, λ) is continuous and relatively compact since w ∈
C([0, 1]×R

3,R), and λ ∈ [0, 1]. We will now show in the
following four steps that Nλ is M -compact.
Step 1: Let y ∈ Z, then

Q2y = Q(Qy) = Qy(Q)

= Qy

[
(r + 1)(r + 2)∑m

i=1 αiξr+2

( m∑
i=1

αi

∫ ξi

0

∫ x

0

vrdvdx

)]

= Qy, t ∈ [0, 1],

hence Q2 = Q. Therefore Q(I − Q)Nλ(Ω) = (Q −
Q)Nλ(Ω) = 0. This implies that Q(I − Q)Nλ(Ω) ⊂
kerQ = Im M . Now, if g ∈ Im M , then Qg = 0. We

can write g as g = g−Qg = (I−Q)g, thus g ∈ (I−Q)Z.
Therefore (i) of definition 2.2 is satisfied.
Step 2: If QNu = 0, then Nu = Nu − QNu =
(I − Q)Nu = 0. Since Nu = 0, (I − Q) is a zero op-
erator. Hence (I − Q)Nλu = 0 and QNλu = 0. Using
same logic it can also be shown that when QNλu = 0,
QNu = 0. Hence (ii) of definition 2.1 is satisfied.
Step 3: Here we show that (iii) of definition 2 holds.
From (7), we have

T (u, λ)(t) = λ
β(t− 1)

1− β

∫ 1

η

(
φq

∫ 1

x

[(I −Q)Nu](v)dv

)
dx

− λ

∫ 1

t

∫ 1

s

φq

(∫ 1

x

[(I −Q)Nu](v)dv

)
dxds,

hence T (·, 0) = 0.

Also for u ∈
∑
λ

= {u ∈ Ω : Mu = Nλu} or

{u ∈ Ω : (φp(u
′′))′ = λw(t, u(t), u′(t), u′′(t))}, we have

T (u, λ)(t) =
β(t− 1)

1− β

∫ 1

η

(
φq

∫ 1

x

(φp(u
′′(v)))′(v)dv

)
dx

−
∫ 1

t

∫ 1

s

φq

(∫ 1

x

(φp(u
′′(v)))′(v)dv

)
dxds

= −β(t− 1)

1− β

∫ 1

η

u′′(x)dxds+
∫ 1

t

∫ 1

s

u′′(x)dxds

=
β(t− 1)

1− β
[u′(η)− u′(1)] + u′(1)(1− t)− u(1) + u(t)

= u′(1)(t− 1) + u′(1)(1− t)− u(1) + u(t)

= [(I − P )u](t).

Step 4: Now for all u ∈ U ∩ dom M , we have

M [P + T (·, λ)]u = u(1)

+
β(t− 1)

1− β

∫ 1

η

(
φq

∫ 1

x

[(I −Q)Nλu](v)dv

)
dx

−
∫ 1

t

∫ 1

s

φq

(∫ 1

x

[(I −Q)Nλu](v)dv

)
dxds

= (I −Q)Nλu(t).

Since conditions (i) - (iv) of Definition 2 are satisfied in
Ω, then Nλ is M -compact .

3 Existence Results

Theorem 2 Let w : [0, 1]× R
3 → R be continuous func-

tion. The p-Laplacian boundary value problem (1)-(2)
with

∑m
i=1 αiξ1 = 1,

φq(2)2
2q−4(‖x‖q−1

∞ + ‖y‖q−1
∞ + ‖z‖q−1

∞ ) < 1 for p < 2
(8)

and

φq(2)(‖x‖q−1
∞ + ‖y‖q−1

∞ + ‖z‖q−1
∞ ) < 1 for p ≥ 2 (9)

has at least one solution in C2[0, 1], if the following con-
ditions hold
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(C1) There exist function x, y, z, h ∈ C([0, 1], [0,∞)) such
that for all (a, b, c) ∈ R

3, t ∈ [0, 1]

|w(t, a, b, c)| ≤ x(t)φp(|a|) + y(t)φp(|b|)
+ z(t)φp(|c|) + h(t).

(10)

(C2) There exists a constant D > 0, such that for any u ∈
dom M , if |u(t)| > D, or |u′(t)| > D, or |u′′(t)| > D,
for every t ∈ [0, 1] then

QNu(t) = 0, t ∈ [0, 1]. (11)

(C3) There exists a constant F > 0 such that for d ∈ R,
if |d| > F , then either

d ·
m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, d, 0, 0)dvdt < 0, (12)

or

d ·
m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, d, 0, 0)dvdt > 0. (13)

Proof. We set

Ω1 = {u ∈ domM kerM : Mu = Nλu, λ ∈ [0, 1]}.
If u ∈ Ω1, then Mu = Nλu and λ = 0, then Nu ∈
ImM = kerQ andQNu(t) = 0. From (C2), it follows
that there exits t0, t1, t2 ∈ [0, 1] such that |u(t0)| ≤ D,
|u′(t1)| ≤ D and |u′′(t2)| ≤ D. By the absolute continuity

of u, u′, we have u(t) = u(t0) +
∫ t

t0
u′(v)dv i.e,

|u(t)| =
∣∣∣∣u(t0) +

∫ t

t0

u′(v)dv
∣∣∣∣ ≤ D +

∫ t

t0

|u′(v)|dv.

Hence, ‖u‖∞ ≤ D + ‖u′‖∞. Also, since u′(t) = u(t1) +∫ t

t1
u′′(v)dv, then

|u′(t)| =
∣∣∣∣u(t1) +

∫ t

t1

u′′(v)dv
∣∣∣∣ ≤ D +

∫ t

t1

|u′′(v)|dv

Hence, ‖u′‖∞ ≤ D + ‖u′′‖∞. Thus,

‖u‖∞ ≤ 2D + ‖u′′‖
.
Therefore,

‖u‖ = max
t∈[0,1]

{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}

≤ 2D + ‖u′′‖∞.
(14)

Now,

|u′′(t)| = φq

∣∣∣∣φp(|u′′(t2)|) +
∫ t

t2

u′′′(v)dv
∣∣∣∣

≤ φq

[
φp(|u′′(t2)|) +

∫ t

t2

|Nλu(v)|dv
]

≤ φq[φp(D) + ‖Nu‖1].

Suppose ‖Nu‖1 ≤ φq(D), then

‖u′′‖∞ ≤ φq(2‖Nu‖‖1).
For 1 < p < 2, considering (10) and lemma 3, we have

‖u′′‖∞ ≤ φq(2‖Nu‖‖1)
≤ φq(2)[2

q−2(φq(‖x‖∞‖u‖q−1
∞ + ‖y‖∞‖u′‖q−1

∞ )

+ φq(‖z‖∞‖u′′‖q−1
∞ + ‖h‖∞))]

≤ φq(2)2
2q−4[‖x‖q−1

∞ ‖u‖∞
+ ‖y‖q−1

∞ ‖u′‖∞
+ ‖z‖q−1

∞ ‖u′′‖∞ + ‖h‖q−1
∞ ]

≤ φq(2)2
2q−4[‖u‖(‖x‖q−1

∞ + ‖y‖q−1
∞

+ ‖z‖q−1
∞ + ‖h‖q−1

∞ ).

From (14), we have

‖u‖ ≤ 2D + ‖u′′‖∞
= 2D + φq(2)2

2q−4[‖u‖(‖x‖q−1
∞ + ‖y‖q−1

∞
+ ‖z‖q−1

∞ + ‖h‖q−1
∞ )

or

‖u‖ ≤ 2D + φq(2)2
2q−4‖h‖q−1

∞
1− φq(2)22q−4[‖x‖q−1∞ + ‖y‖q−1∞ + ‖z‖q−1∞ ]

(15)

Let D1 =
2D+φq(2)2

2q−4‖h‖q−1
∞

1−φq(2)22q−4[‖x‖q−1
∞ +‖y‖q−1

∞ +‖z‖q−1
∞ ]

, in view of

(8), we see that D1 > 0 and ‖u‖ ≤ D1. Hence, Ω1 is
bounded.
For p ≥ 2,

‖u′′‖∞ ≤ φq(2‖Nu‖‖1)
≤ φq(2)[‖x‖q−1

∞ ‖u‖∞
+ ‖y‖q−1

∞ ‖u′‖∞ + ‖z‖q−1
∞ ‖u′′‖∞ + ‖h‖q−1

∞ ]

≤ φq(2)[‖u‖(‖x‖q−1
∞ + ‖y‖q−1

∞ + ‖z‖q−1
∞ + ‖h‖q−1

∞ ).

From (14), we have

‖u‖ ≤ 2D + ‖u′′‖∞
= 2D + φq(2)[‖u‖(‖x‖q−1

∞ + ‖y‖q−1
∞

+ ‖z‖q−1
∞ + ‖h‖q−1

∞ )

or

‖u‖ ≤ 2D + φq(2)‖h‖q−1
∞

1− φq(2)[‖x‖q−1∞ + ‖y‖q−1∞ + ‖z‖q−1∞ ]
(16)

Let D1 =
2D+φq(2)‖h‖q−1

∞
1−φq(2)[‖x‖q−1

∞ +‖y‖q−1
∞ +‖z‖q−1

∞ ]
, in view of (9), we

see that D1 > 0 and ‖u‖ ≤ D1. Hence, Ω1 is bounded.
We next let

Ω2 = {u ∈ kerM : Nu ∈ ImM}.
If u ∈ Ω2, then u ∈ kerM and u can be defined as u(t) =
ω, t ∈ [0, 1], ω is an arbitrary constant.
Since QNu = 0, then

m∑
i=1

αi

∫ ξi

0

∫ x

0

w(v, d, 0, 0)dvdt = 0.
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From (C3), it follows that ‖u‖ = ω ≤ F . Hence, Ω2 is
bounded.
Let the isomorphism J : ImQ → kerL be defined as

J(dtr) = d, d ∈ R.

If d ·∑m
i=1 αi

∫ ξi
0

∫ x

0
w(v, d, 0, 0)dvdt < 0, we define

Ω3 = {u ∈ kerM : λJ−1u = (1− λ)QNu, λ ∈ [0, 1]}.
For u ∈ Ω3, we have

λdtr

= tr(1− λ)
(r + 1)(r + 2)∑m

i=1 αiξr+2

m∑
i=1

αi

∫ ξi

0

∫ x

0

w(v, d, 0, 0)dvdt.

When λ = 1, d = 0. However, when |d| > F , in view of
(11), we obtain

λd2tr

= trd(1− λ)
(r + 1)(r + 2)∑m

i=1 αiξr+2

m∑
i=1

αi

∫ ξi

0

∫ x

0

w(v, d, 0, 0)dvdt

< 0,

which contradicts λd2tr > 0. Therefore |u| = |d| ≤ F ,
implying that ‖u‖ ≤ F . Hence Ω3 is bounded.

If d ·∑m
i=1 αi

∫ ξi
0

∫ x

0
w(v, d, 0, 0)dvdt > 0, we define

Ω3 = {u ∈ kerM : λJ−1u = −(1− λ)QNu, λ ∈ [0, 1]}.
Similar arguments can be used to show that Ω3 is
bounded. This concludes the proof of Theorem 2.

Finally, we will show that all the conditions of Theo-
rem 1 are satisfied. Take an open bounded set Ω ⊂ U
such that U3

i=1Ωi ⊂ Ω. Lemma 3 shows that M is a
quasi-linear operator while Lemma 4 shows that Nλ is
M -compact on Ω. Thus conditions (i) and (ii) of Theo-
rem 1 are satisfied. Finally, we show that (iii) also holds.
Set E(u, λ) = ±λu + (1 − λ)JQNu, J(dtr) = d. When
λ = 0, JQNu = 0, for λ = 1, E(u, 1) = ±Idu = 0.
For λ ∈ (0, 1), from (C3), we see that E(u, 0) = 0. Then
based on the above argument, for every u ∈ kerM ∩ ∂Ω,
E(u, λ) = 0. Therefore, the homotopy property of degree
gives

deg(JQN |kerM ,Ω ∩ kerM, 0) = deg(E(·, 0),Ω ∩ kerM, 0)

= deg(E(·, 1),Ω ∩ kerM, 0)

= deg(±Id,Ω ∩ kerM, 0) = ±1

= 0.

Therefore condition (iii) of Theorem 1 holds and problem
(1)-(2) has at least one solution in Ω.

4 Example

We will consider the following p-Laplacian boundary
value problem

(φ3(u
′′(t)))′ = t+5u(t)2+12 cos(u′(t)2)+12u′′(t)2, t ∈ (0, 1),

(17)

φ3(u
′′(0)) = 6

∫ 1
3

0

φ3u
′′(t)dt− 2

∫ 1
2

0

φ3u
′′(t)dt,

u′′(1) = 0, u′(1) = 3u′
(
1

2

)
,

(18)

where p = 3 > 2, q = 2
3 , α1 = 6, α2 = −2, ξ1 = 1

3 ,
ξ2 = 1

2 , η = 1
2 , and β = 3. Also,

w(t, a, b, c) = t+ 5a2 + 12(cos b2) + 12c2.

The resonance condition is fulfilled since, α1 + α2 = 4−
2 = 2 = 0 and
α1ξ1 + α2ξ2 = (4)

(
1
2

)
+ (−2)

(
1
2

)
= 1. Now

|w(t, a, b, c)| ≤ |t|+ 5|a|2 + 12| cos b2|+ 12|c|2
= 1 + 5|a|2 + 12 + 12|c|2
= 13 + 5|a|2 + 12|c|2.

Since x(t) = 5, y(t) = 0, z(t) = 12, t ∈ (0, 1), then

φq(2)[‖x‖q−1
∞ + ‖y‖q−1

∞ + ‖z‖q−1
∞ ] = 2−

1
3 [5−

1
3 + 12−

1
3 ]

= 0.6934(0.5848 + 0.4368) = 0.7083 < 1.

Therefore, condition (E1) is satisfied.
Next we show that condition (E2) holds. Let D = 3. and
u ∈ domM . if |u(t)| > D, t ∈ (0, 1), then either u(t) > D
or u(t) < −D.
For u(t) > D, we have

m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, u, u′, u′′)dvdt

= 4

∫ 1
2

0

∫ t

0

(
v + 5u2 + 12(cos(u′)2 + 12(u′′)

)
dvdt

− 2

∫ 1
2

0

∫ t

0

(
v + 5u2 + 12 cos(u′)2 + 12(u′′)2

)
dvdt

> 4

∫ 1
2

0

∫ t

0

(
v + 5D2 − 12 + 12D2

)
dvdt

− 2

∫ 1
2

0

∫ t

0

(
v + 5D2 − 12 + 12D2

)
dvdt

>
17

4
D2 − 47

24
> 0.
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Similarly, if u(t) < −D, then

m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, u, u′, u′′)dvdt

= 4

∫ 1
2

0

∫ t

0

(
v + 5u2 + 12 cos(u′)2 + 12(u′′)2

)
dvdt

− 2

∫ 1
2

0

∫ t

0

(
v + 5u2 + 12 cos(u′)2 + 12(u′′)2

)
dvdt

< 4

∫ 1
2

0

∫ t

0

(
v − 5D2 + 12− 12D2

)
dvdt

− 2

∫ 1
2

0

∫ t

0

(
v − 5D2 + 12− 12D2

)
dvdt

<
73

24
− 17

4
D2 < 0

Therefore, condition (E2) holds.
Finally, we will show that condition (E3) holds. Here,

d ·
m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, d, 0, 0)dvdt

= d

[
4

∫ 1
2

0

∫ t

0

(
v +

1

5
d

)
dvdt− 2

∫ 1
2

0

∫ t

0

(
v +

1

5
d

)
dvdt

]

= d

[
1

20
d+

1

24

]

Let F = 1
6 > 0, then for c ∈ R, such that |d| > F , then

either d > F or d < −F . For d > F , we have

d ·
m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, d, 0, 0)dvdt > 0,

while for d < F ,

d ·
m∑
i=1

αi

∫ ξi

0

∫ t

0

w(v, d, 0, 0)dvdt < 0.

Thus, Condition (E3) is holds. The p-Laplacian problem
(13) - (14) has at least one solution in C2[0, 1] since it
satisfies Theorem 2.
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