On the Solvability of a Resonant p-Laplacian Third-order Integral m-Point Boundary Value Problem

Ogbu Famous Imaga*, Sunday Onos Edeki ${ }^{\dagger}$ and Olasunmbo Olaoluwa Agboola ${ }^{\ddagger}$

Abstract

In this work, we establish conditions for the existence of at least one solution for a pLaplacian third order integral and m-point boundary value problem at resonance. The Ge and Ren extension of Mawhin's coincidence theory will be used to obtain existence results for the p-Laplacian problem at resonance.

Index Terms- Coincidence degree, resonance, mpoint, integral boundary value problem, p-Laplacian.

1 Introduction

This work deals with the following p-Laplacian third order integral and m-point boundary value problem at resonance

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}=w\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right), \quad t \in(0,1) \tag{1}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{align*}
& \phi_{p}\left(u^{\prime \prime}(0)\right)=\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \phi_{p}\left(u^{\prime \prime}(t)\right) d t, \tag{2}\\
& u^{\prime \prime}(1)=0, u^{\prime}(1)=\beta u^{\prime}(\eta),
\end{align*}
$$

where the function $w:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous, $\phi_{p}(s)=|s|^{p-2} s, p>1$, the inverse of ϕ_{p}^{-1} is $\phi_{q}, \frac{1}{p}+\frac{1}{q}=1$, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m}<1, \beta>0, \alpha_{i}(1 \leq i \leq m) \in \mathbb{R}$ and $\eta \in(0,1)$. Since we require a nontrivial kernel for our quasi-linear operator, the condition $\sum_{i=1}^{m} \alpha_{i} \xi_{i}=1$ is critical. The integral in (2) is the Riemann-Stieltjes integral.
A boundary value problem $L u=u^{\prime \prime \prime}(t)=0$ is said to be at resonance if L is non-vertible else it is a non-resonance problem where L is a linear operator. Since the establishment of the coincidence degree theory by Mawhin,

for boundary value problems at ressonance [13], many authors have studied resonant problems when the differential operator is linear (see [1, 3, 5, 6, 8, 9, 12]). When the differential operator is nonlinear, like in p-Laplace boundary value problems the Mawhin coincidence degree theory fails while the extension of the theorem by Ge and Ren [4] is used (see [7, 2, 15, 10]).
Inspired by the above works, this paper uses the Ge and Ren extension of the coincidence degree theory [4] to establish the existence of solutions for the problems (1)-(2) at resonance.
The rest of the paper is organized as follows. Section 2 gives necessary definitions, lemmas and theorem that are needed tor the work. In section 3, we obtain existence results for (1)-(2) while an example will be given in section 4 to corroborate our result.

2 Preliminaries

In this section, we will give necessary lemmas, definitions and theorems.

Definition 1. Given two Banach spaces, U and Z with norms $\|\cdot\|_{U}$ and $\|\cdot\|_{Z}$ respectively, a continuous operator

$$
M: \operatorname{dom} M \subset U \rightarrow Z
$$

is said to be quasi-linear if
(i) $\operatorname{Im} M$ is a closed subset of Z;
(ii) ker M is linearly homeomorphic to $\mathbb{R}^{n}, n<\infty$.

Definition 2. ([10]) Let $\Omega \subset U$ be a bounded open set with the origin $\sigma \in \Omega$. The nonlinear operator N_{λ} : $\bar{\Omega} \rightarrow Z, \lambda \in[0,1]$ is said to be M-compact in $\bar{\Omega}$ if there exist $Z_{1} \subset Z$ with $\operatorname{dim} Z_{1}=\operatorname{dim} \operatorname{ker} M$ and a continuous, compact operator $T: \bar{\Omega} \times[0,1] \rightarrow U_{2}$ such that for $\lambda \in$ $[0,1]$,
(i) $(I-Q) N_{\lambda} \subset \operatorname{Im} M \subset(I-Q) Z$;
(ii) $Q N_{\lambda} u=0, \lambda \in(0,1) \Leftrightarrow Q N u=0, \forall u \in \Omega$;
(iii) $T(\cdot, 0) \equiv 0$ and $\left.T(\cdot, \lambda)\right|_{\sum_{\lambda}}=(I-P)_{\sum_{\lambda}}$;
(iv) $M[P+T(\cdot, \lambda)]=(I-Q) N_{\lambda}, \lambda \in[0,1]$;
where $U_{2} \in U$ is a complement space of $\operatorname{ker} M$, i.e. $U=$ ker $M \oplus U_{2} ; P, Q$ are projectors such that $\operatorname{ker} M=\operatorname{Im} P$, $\operatorname{Im} Q=Z_{1}, N=N_{1}$, and $\sum_{\lambda}=\left\{u \in \bar{\Omega}: M u=N_{\lambda} u\right\}$.

Lemma 3. [16] The following are true for ϕ_{p} :

1. ((i)) ϕ_{p} is continuous, invertible and monotonically increasing. In addition, $\phi_{p}^{-1}=\phi_{q}$ and for $q>1$ then $\frac{1}{p}+\frac{1}{q}=1 ;$
(ii) For all $y, z, \geq 0$,

$$
\begin{array}{ll}
\phi_{p}(y+z) \leq \phi_{p}(y)+\phi_{p}(z), & \text { if } 1<p<2, \\
\phi_{p}(y+z) \leq 2^{p-2}\left(\phi_{p}(y)+\phi_{p}(z)\right), & \text { if } p \geq 2 .
\end{array}
$$

Theorem 1. ([4]) Let U and Z be Banach spaces, and $\Omega \subset U$ a bounded open nonempty set. Also M : dom $M \subset U \rightarrow Z$ is quasi-linear and $N_{\lambda}: \bar{\Omega} \rightarrow Z, \lambda \in$ $[0,1]$ is M-compact in $\bar{\Omega}$. Assume the following conditions are satisfied
(i) $M u \neq N_{\lambda} u$ for every $(u, \lambda) \in[(\operatorname{dom} M \backslash \operatorname{ker} M) \cap$ $\partial \Omega] \times(0,1) ;$
(ii) $Q N u \neq 0$ for every $u \in \operatorname{ker} M \cap \partial \Omega$;
(iii) $\operatorname{deg}(J Q N, \Omega \cap \operatorname{ker} M, 0) \neq 0$, where $J: \operatorname{Im} Q \rightarrow$ $\operatorname{ker} M$ is a homeomorphism.

Then, the abstract equation $M u=N u$ has at least one solution in $\bar{\Omega}$.

Let
$U=\left\{u \in C^{2}[0,1]: \phi_{p}\left(u^{\prime \prime}(t)\right) \in C^{1}[0,1], u(t)\right.$ satisfies $\left.(2)\right\}$ where the norms $\|z\|_{\infty}=\max _{t \in[0,1]}|x(t)|$ and $\|u\|=$ $\max \left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty},\left\|u^{\prime \prime}\right\|_{\infty}\right\}$ are defined on U.
Let $Z=L^{1}[0,1]$ with the norm on Z denoted by $\|\cdot\|_{1}$. The quasi-linear operator $M: \operatorname{dom} M \subset U \rightarrow Z$ will be defined by

$$
M: u \mapsto M u=\left(\phi_{t}\left(u^{\prime \prime}(t)\right)^{\prime}, t \in[0,1],\right.
$$

where $\operatorname{dom} M=\left\{u \in U \cap C^{2}[0,+\infty):\right.$
$\phi_{p}\left(u^{\prime \prime}(0)\right)=\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \phi_{p}\left(u^{\prime \prime}(t)\right) d t, u^{\prime \prime}(1)=0, u^{\prime}(1)=$ $\left.\beta u^{\prime}(\eta)\right\}$. Also, the nonlinear operator $N_{\lambda}: U \rightarrow Z, \lambda \in$ $[0,1]$ will be defined by

$$
\left(N_{\lambda} u\right) t=\lambda q\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right), t \in[0,1]
$$

thus problem (1)-(2) may be written in the form

$$
M u=N_{\lambda} u
$$

Lemma 2. If $\sum_{i=1}^{m} \alpha_{i} \xi_{i}=1$ then there exists $r \in\{1,2, \ldots, m-1\}$, such that

$$
\sum_{i=1}^{m} \alpha_{i} \xi_{i}^{r+2} \neq 0
$$

Proof. Since $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m}<1$, and $\sum_{i=1}^{m} \alpha_{i} \xi_{i}=1$ then there exists $i \in[1, m]$ such that $\alpha_{i} \neq 0$, hence $\sum_{i=1}^{m} \alpha_{i} \neq 0$. Assuming

$$
\sum_{i=1}^{m} \alpha_{i} \xi_{i}^{r+2}=0, r=0,1, \ldots, m-2
$$

we have

$$
\left(\begin{array}{llll}
\xi_{1}^{2} & \xi_{2}^{2} & \cdots & \xi_{m}^{2} \\
\xi_{1}^{3} & \xi_{2}^{3} & \cdots & \xi_{m}^{3} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{1}^{m} & \xi_{2}^{m} & \cdots & \xi_{m}^{m}
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{llll}
\xi_{1}^{2} & \xi_{2}^{2} & \cdots & \xi_{m}^{2} \\
\xi_{1}^{3} & \xi_{2}^{3} & \cdots & \xi_{m}^{3} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{1}^{m} & \xi_{2}^{m} & \cdots & \xi_{m}^{m}
\end{array}\right) \\
& =\xi_{1}^{2} \xi_{2}^{2} \cdots \xi_{m}^{2}\left(\begin{array}{llll}
1 & 1 & \cdots & 1 \\
\xi_{1} & \xi_{2} & \cdots & \xi_{m} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{1}^{m-2} & \xi_{2}^{m-2} & \cdots & \xi_{m}^{m-2}
\end{array}\right) \\
& =\left(\prod_{i=1}^{m} \xi^{2}\right) \prod_{1 \leq i<j \leq m}\left(\xi_{j}-\xi_{i}\right) \neq 0
\end{aligned}
$$

then, $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=0$, which contradicts $\sum_{i=1}^{m} \alpha_{i} \neq 0$. Hence, Lemma 2 holds.

Lemma 3. If $\sum_{i=1}^{m} \alpha_{i} \xi_{i}=1$, then, the operator M : $\operatorname{dom} M \subset U \rightarrow Z$ is quasi-linear.

Proof. By simple calculation, we see that

$$
\operatorname{ker} M=\{u \in \operatorname{dom} M: u=d, d \in \mathbb{R}\}
$$

We will now show that

$$
\begin{equation*}
\operatorname{Im} M=\left\{y \in Z: \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} y(v) d v d x=0\right\} \tag{3}
\end{equation*}
$$

The p-Laplacian problem

$$
\begin{equation*}
\left.\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}=y(v) \tag{4}
\end{equation*}
$$

has a solution $u(t)$ that satisfies (2) when

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} y(v) d v d x=0 \tag{5}
\end{equation*}
$$

The solution of (4), u(t) that satisfies (2) can be written as
$u(t)=u(1)+u^{\prime}(1)(t-1)-\int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1} y(v) d v\right) d x d s$.
Applying the boundary condition (2) and $\sum_{i=1}^{m} \alpha_{i} \xi_{i}=1$ to (6) we obtain

$$
\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} y(v) d v d x=0
$$

which satisfies (3) and

$$
\begin{aligned}
u(t) & =d+\frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1} \phi_{q} \int_{x}^{1} y(v) d v d x s \\
& -\int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1} y(v) d v\right) d x d s
\end{aligned}
$$

where d is an arbitrary constant and $u(t)$ is the solution to (4) satisfying (2). Since $\operatorname{ker} M=1<\infty$ and
$M(U \cap \operatorname{dom} M) \subset Z$ is closed, the operator M is quasi-linear.

Lemma 4. The nonlinear operator N_{λ} is M-compact, if $w \in C\left([0,1] \times \mathbb{R}^{3}, \mathbb{R}\right)$.

Proof. We define projectors $P: U \rightarrow U_{1}$ as $P u=u(1)$ for all $u \in U$ and $Q: Z \rightarrow Z_{1}$ as

$$
Q y=\frac{(r+1)(r+2)}{\sum_{i=1}^{m} \alpha_{i} \xi^{r+2}}\left(\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} y(v) d v d x\right) t^{r}
$$

$t \in[0,1], \forall y \in Z$, where Z_{1} is the complement space of $\operatorname{Im} M$ in Z. Let $\bar{\Omega} \subset U$ be bounded, then we will define $T: \bar{\Omega} \times[0,1] \rightarrow \operatorname{ker} P$ as

$$
\begin{align*}
& T(u, \lambda)(t)=\frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1}\left(\phi_{q} \int_{x}^{1}\left[(I-Q) N_{\lambda} u\right](v) d v\right) d x \\
& -\int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1}\left[(I-Q) N_{\lambda} u\right](v) d v\right) d x d s, t \in[0,1] \tag{7}
\end{align*}
$$

$T(\cdot, \lambda)$ is continuous and relatively compact since $w \in$ $C\left([0,1] \times \mathbb{R}^{3}, \mathbb{R}\right)$, and $\lambda \in[0,1]$. We will now show in the following four steps that N_{λ} is M-compact.
Step 1: Let $y \in Z$, then

$$
\begin{aligned}
Q^{2} y & =Q(Q y)=Q y(Q) \\
& =Q y\left[\frac{(r+1)(r+2)}{\sum_{i=1}^{m} \alpha_{i} \xi^{r+2}}\left(\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} v^{r} d v d x\right)\right] \\
& =Q y, \quad t \in[0,1]
\end{aligned}
$$

hence $Q^{2}=Q$. Therefore $Q(I-Q) N_{\lambda}(\bar{\Omega})=(Q-$ Q) $N_{\lambda}(\bar{\Omega})=0$. This implies that $Q(I-Q) N_{\lambda}(\bar{\Omega}) \subset$ $\operatorname{ker} Q=\operatorname{Im} M$. Now, if $g \in \operatorname{Im} M$, then $Q g=0$. We
can write g as $g=g-Q g=(I-Q) g$, thus $g \in(I-Q) Z$. Therefore (i) of definition 2.2 is satisfied.
Step 2: If $Q N u=0$, then $N u=N u-Q N u=$ $(I-Q) N u=0$. Since $N u \neq 0,(I-Q)$ is a zero operator. Hence $(I-Q) N_{\lambda} u=0$ and $Q N_{\lambda} u=0$. Using same logic it can also be shown that when $Q N_{\lambda} u=0$, $Q N u=0$. Hence (ii) of definition 2.1 is satisfied.
Step 3: Here we show that (iii) of definition 2 holds. From (7), we have

$$
\begin{aligned}
T(u, \lambda)(t) & =\lambda \frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1}\left(\phi_{q} \int_{x}^{1}[(I-Q) N u](v) d v\right) d x \\
& -\lambda \int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1}[(I-Q) N u](v) d v\right) d x d s
\end{aligned}
$$

hence $T(\cdot, 0)=0$.
Also for $u \in \sum_{\lambda}=\left\{u \in \bar{\Omega}: M u=N_{\lambda} u\right\}$ or
$\left\{u \in \bar{\Omega}:\left(\phi_{p}\left(u^{\prime \prime}\right)\right)^{\prime}=\lambda w\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)\right\}$, we have

$$
\begin{aligned}
T & (u, \lambda)(t)=\frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1}\left(\phi_{q} \int_{x}^{1}\left(\phi_{p}\left(u^{\prime \prime}(v)\right)\right)^{\prime}(v) d v\right) d x \\
& -\int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1}\left(\phi_{p}\left(u^{\prime \prime}(v)\right)\right)^{\prime}(v) d v\right) d x d s \\
& =-\frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1} u^{\prime \prime}(x) d x d s+\int_{t}^{1} \int_{s}^{1} u^{\prime \prime}(x) d x d s \\
& =\frac{\beta(t-1)}{1-\beta}\left[u^{\prime}(\eta)-u^{\prime}(1)\right]+u^{\prime}(1)(1-t)-u(1)+u(t) \\
& =u^{\prime}(1)(t-1)+u^{\prime}(1)(1-t)-u(1)+u(t) \\
& =[(I-P) u](t) .
\end{aligned}
$$

Step 4: Now for all $u \in U \cap \operatorname{dom} M$, we have

$$
\begin{aligned}
& M {[P+T(\cdot, \lambda)] u=u(1) } \\
& \quad+\frac{\beta(t-1)}{1-\beta} \int_{\eta}^{1}\left(\phi_{q} \int_{x}^{1}\left[(I-Q) N_{\lambda} u\right](v) d v\right) d x \\
&-\int_{t}^{1} \int_{s}^{1} \phi_{q}\left(\int_{x}^{1}\left[(I-Q) N_{\lambda} u\right](v) d v\right) d x d s \\
& \quad=(I-Q) N_{\lambda} u(t) .
\end{aligned}
$$

Since conditions (i) - (iv) of Definition 2 are satisfied in $\bar{\Omega}$, then N_{λ} is M-compact .

3 Existence Results

Theorem 2 Let $w:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be continuous function. The p-Laplacian boundary value problem (1)-(2) with $\sum_{i=1}^{m} \alpha_{i} \xi_{1}=1$,

$$
\begin{equation*}
\phi_{q}(2) 2^{2 q-4}\left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right)<1 \quad \text { for } p<2 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{q}(2)\left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right)<1 \quad \text { for } p \geq 2 \tag{9}
\end{equation*}
$$

has at least one solution in $C^{2}[0,1]$, if the following conditions hold
$\left(C_{1}\right)$ There exist function $x, y, z, h \in C([0,1],[0, \infty))$ such that for all $(a, b, c) \in \mathbb{R}^{3}, t \in[0,1]$

$$
\begin{align*}
|w(t, a, b, c)| & \leq x(t) \phi_{p}(|a|)+y(t) \phi_{p}(|b|) \tag{10}\\
& +z(t) \phi_{p}(|c|)+h(t)
\end{align*}
$$

$\left(C_{2}\right)$ There exists a constant $D>0$, such that for any $u \in$ $\operatorname{dom} M$, if $|u(t)|>D$, or $\left|u^{\prime}(t)\right|>D$, or $\left|u^{\prime \prime}(t)\right|>D$, for every $t \in[0,1]$ then

$$
\begin{equation*}
Q N u(t) \neq 0, t \in[0,1] . \tag{11}
\end{equation*}
$$

$\left(C_{3}\right)$ There exists a constant $F>0$ such that for $d \in \mathbb{R}$, if $|d|>F$, then either

$$
\begin{equation*}
d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w(v, d, 0,0) d v d t<0 \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w(v, d, 0,0) d v d t>0 \tag{13}
\end{equation*}
$$

Proof. We set

$$
\Omega_{1}=\left\{u \in \operatorname{dom} M \text { ker } M: M u=N_{\lambda} u, \lambda \in[0,1]\right\} .
$$

If $u \in \Omega_{1}$, then $M u=N_{\lambda} u$ and $\lambda \neq 0$, then $N u \in$ $\operatorname{Im} M=\operatorname{ker} Q \operatorname{and} Q N u(t)=0$. From $\left(C_{2}\right)$, it follows that there exits $t_{0}, t_{1}, t_{2} \in[0,1]$ such that $\left|u\left(t_{0}\right)\right| \leq D$, $\left|u^{\prime}\left(t_{1}\right)\right| \leq D$ and $\left|u^{\prime \prime}\left(t_{2}\right)\right| \leq D$. By the absolute continuity of u, u^{\prime}, we have $u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} u^{\prime}(v) d v$ i.e,

$$
|u(t)|=\left|u\left(t_{0}\right)+\int_{t_{0}}^{t} u^{\prime}(v) d v\right| \leq D+\int_{t_{0}}^{t}\left|u^{\prime}(v)\right| d v
$$

Hence, $\|u\|_{\infty} \leq D+\left\|u^{\prime}\right\|_{\infty}$. Also, since $u^{\prime}(t)=u\left(t_{1}\right)+$ $\int_{t_{1}}^{t} u^{\prime \prime}(v) d v$, then

$$
\left|u^{\prime}(t)\right|=\left|u\left(t_{1}\right)+\int_{t_{1}}^{t} u^{\prime \prime}(v) d v\right| \leq D+\int_{t_{1}}^{t}\left|u^{\prime \prime}(v)\right| d v
$$

Hence, $\left\|u^{\prime}\right\|_{\infty} \leq D+\left\|u^{\prime \prime}\right\|_{\infty}$. Thus,

$$
\|u\|_{\infty} \leq 2 D+\left\|u^{\prime \prime}\right\|
$$

Therefore,

$$
\begin{align*}
\|u\| & =\max _{t \in[0,1]}\left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty},\left\|u^{\prime \prime}\right\|_{\infty}\right\} \tag{14}\\
& \leq 2 D+\left\|u^{\prime \prime}\right\|_{\infty} .
\end{align*}
$$

Now,

$$
\begin{aligned}
\left|u^{\prime \prime}(t)\right| & =\phi_{q}\left|\phi_{p}\left(\left|u^{\prime \prime}\left(t_{2}\right)\right|\right)+\int_{t_{2}}^{t} u^{\prime \prime \prime}(v) d v\right| \\
& \leq \phi_{q}\left[\phi_{p}\left(\left|u^{\prime \prime}\left(t_{2}\right)\right|\right)+\int_{t_{2}}^{t}\left|N_{\lambda} u(v)\right| d v\right] \\
& \leq \phi_{q}\left[\phi_{p}(D)+\|N u\|_{1}\right] .
\end{aligned}
$$

Suppose $\|N u\|_{1} \leq \phi_{q}(D)$, then

$$
\left\|u^{\prime \prime}\right\|_{\infty} \leq \phi_{q}\left(2\|N u\| \|_{1}\right) .
$$

For $1<p<2$, considering (10) and lemma 3, we have

$$
\begin{aligned}
& \left\|u^{\prime \prime}\right\|_{\infty} \leq \phi_{q}\left(2\|N u\| \|_{1}\right) \\
& \quad \leq \phi_{q}(2)\left[2 ^ { q - 2 } \left(\phi_{q}\left(\|x\|_{\infty}\|u\|_{\infty}^{q-1}+\|y\|_{\infty}\left\|u^{\prime}\right\|_{\infty}^{q-1}\right)\right.\right. \\
& \left.\left.\quad+\phi_{q}\left(\|z\|_{\infty}\left\|u^{\prime \prime}\right\|_{\infty}^{q-1}+\|h\|_{\infty}\right)\right)\right] \\
& \quad \leq \phi_{q}(2) 2^{2 q-4}\left[\|x\|_{\infty}^{q-1}\|u\|_{\infty}\right. \\
& \quad+\|y\|_{\infty}^{q-1}\left\|u^{\prime}\right\|_{\infty} \\
& \left.\quad+\|z\|_{\infty}^{q-1}\left\|u^{\prime \prime}\right\|_{\infty}+\|h\|_{\infty}^{q-1}\right] \\
& \quad \leq \phi_{q}(2) 2^{2 q-4}\left[\| u \| \left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}\right.\right. \\
& \left.\quad+\|z\|_{\infty}^{q-1}+\|h\|_{\infty}^{q-1}\right) .
\end{aligned}
$$

From (14), we have

$$
\begin{aligned}
\|u\| & \leq 2 D+\left\|u^{\prime \prime}\right\|_{\infty} \\
& =2 D+\phi_{q}(2) 2^{2 q-4}\left[\| u \| \left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}\right.\right. \\
& \left.+\|z\|_{\infty}^{q-1}+\|h\|_{\infty}^{q-1}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\|u\| \leq \frac{2 D+\phi_{q}(2) 2^{2 q-4}\|h\|_{\infty}^{q-1}}{1-\phi_{q}(2) 2^{2 q-4}\left[\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right]} \tag{15}
\end{equation*}
$$

Let $D_{1}=\frac{2 D+\phi_{q}(2) 2^{2 q-4}\|h\|_{\infty}^{q-1}}{1-\phi_{q}(2) 2^{2 q-4}\left[\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right]}$, in view of (8), we see that $D_{1}>0$ and $\|u\| \leq D_{1}$. Hence, Ω_{1} is bounded.
For $p \geq 2$,

$$
\begin{aligned}
& \left\|u^{\prime \prime}\right\|_{\infty} \leq \phi_{q}\left(2\|N u\| \|_{1}\right) \\
& \quad \leq \phi_{q}(2)\left[\|x\|_{\infty}^{q-1}\|u\|_{\infty}\right. \\
& \left.\quad+\|y\|_{\infty}^{q-1}\left\|u^{\prime}\right\|_{\infty}+\|z\|_{\infty}^{q-1}\left\|u^{\prime \prime}\right\|_{\infty}+\|h\|_{\infty}^{q-1}\right] \\
& \quad \leq \phi_{q}(2)\left[\|u\|\left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}+\|h\|_{\infty}^{q-1}\right) .\right.
\end{aligned}
$$

From (14), we have

$$
\begin{aligned}
\|u\| & \leq 2 D+\left\|u^{\prime \prime}\right\|_{\infty} \\
& =2 D+\phi_{q}(2)\left[\| u \| \left(\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}\right.\right. \\
& \left.+\|z\|_{\infty}^{q-1}+\|h\|_{\infty}^{q-1}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\|u\| \leq \frac{2 D+\phi_{q}(2)\|h\|_{\infty}^{q-1}}{1-\phi_{q}(2)\left[\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right]} \tag{16}
\end{equation*}
$$

Let $D_{1}=\frac{2 D+\phi_{q}(2)\|h\|_{\infty}^{q-1}}{1-\phi_{q}(2)\left[\|x\|_{\infty}^{q-1}+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right]}$, in view of (9), we see that $D_{1}>0$ and $\|u\| \leq D_{1}$. Hence, Ω_{1} is bounded. We next let

$$
\Omega_{2}=\{u \in \operatorname{ker} M: N u \in \operatorname{Im} M\}
$$

If $u \in \Omega_{2}$, then $u \in \operatorname{ker} M$ and u can be defined as $u(t)=$ $\omega, t \in[0,1], \omega$ is an arbitrary constant.
Since $Q N u=0$, then

$$
\sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} w(v, d, 0,0) d v d t=0
$$

From $\left(C_{3}\right)$, it follows that $\|u\|=\omega \leq F$. Hence, Ω_{2} is bounded.
Let the isomorphism $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$ be defined as

$$
J\left(d t^{r}\right)=d, d \in \mathbb{R}
$$

If $d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} w(v, d, 0,0) d v d t<0$, we define

$$
\Omega_{3}=\left\{u \in \operatorname{ker} M: \lambda J^{-1} u=(1-\lambda) Q N u, \lambda \in[0,1]\right\}
$$

For $u \in \Omega_{3}$, we have
$\lambda d t^{r}$

$$
=t^{r}(1-\lambda) \frac{(r+1)(r+2)}{\sum_{i=1}^{m} \alpha_{i} \xi^{r+2}} \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} w(v, d, 0,0) d v d t
$$

$$
\begin{align*}
& \phi_{3}\left(u^{\prime \prime}(0)\right)=6 \int_{0}^{\frac{1}{3}} \phi_{3} u^{\prime \prime}(t) d t-2 \int_{0}^{\frac{1}{2}} \phi_{3} u^{\prime \prime}(t) d t \tag{18}\\
& u^{\prime \prime}(1)=0, u^{\prime}(1)=3 u^{\prime}\left(\frac{1}{2}\right)
\end{align*}
$$

where $p=3>2, q=\frac{2}{3}, \alpha_{1}=6, \alpha_{2}=-2, \xi_{1}=\frac{1}{3}$, $\xi_{2}=\frac{1}{2}, \eta=\frac{1}{2}$, and $\beta=3$. Also,

$$
w(t, a, b, c)=t+5 a^{2}+12\left(\cos b^{2}\right)+12 c^{2}
$$

When $\lambda=1, d=0$. However, when $|d|>F$, in view of (11), we obtain

$$
\begin{aligned}
& \lambda d^{2} t^{r} \\
& \quad=t^{r} d(1-\lambda) \frac{(r+1)(r+2)}{\sum_{i=1}^{m} \alpha_{i} \xi^{r+2}} \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} w(v, d, 0,0) d v d t
\end{aligned}
$$

$$
<0
$$

which contradicts $\lambda d^{2} t^{r}>0$. Therefore $|u|=|d| \leq F$, implying that $\|u\| \leq F$. Hence Ω_{3} is bounded.
If $d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{x} w(v, d, 0,0) d v d t>0$, we define
$\Omega_{3}=\left\{u \in \operatorname{ker} M: \lambda J^{-1} u=-(1-\lambda) Q N u, \lambda \in[0,1]\right\}$.
Similar arguments can be used to show that Ω_{3} is bounded. This concludes the proof of Theorem 2.
Finally, we will show that all the conditions of Theorem 1 are satisfied. Take an open bounded set $\Omega \subset U$ such that $U_{i=1}^{3} \bar{\Omega}_{i} \subset \Omega$. Lemma 3 shows that M is a quasi-linear operator while Lemma 4 shows that N_{λ} is M-compact on $\bar{\Omega}$. Thus conditions (i) and (ii) of Theorem 1 are satisfied. Finally, we show that (iii) also holds. Set $E(u, \lambda)= \pm \lambda u+(1-\lambda) J Q N u, J\left(d t^{r}\right)=d$. When $\lambda=0, J Q N u \neq 0$, for $\lambda=1, E(u, 1)= \pm I d u \neq 0$. For $\lambda \in(0,1)$, from $\left(C_{3}\right)$, we see that $E(u, 0) \neq 0$. Then based on the above argument, for every $u \in \operatorname{ker} M \cap \partial \Omega$, $E(u, \lambda) \neq 0$. Therefore, the homotopy property of degree gives
$\operatorname{deg}\left(\left.J Q N\right|_{\text {ker } M}, \Omega \cap \operatorname{ker} M, 0\right)=\operatorname{deg}(E(\cdot, 0), \Omega \cap \operatorname{ker} M, 0)$

$$
\begin{aligned}
& =\operatorname{deg}(E(\cdot, 1), \Omega \cap \operatorname{ker} M, 0) \\
& =\operatorname{deg}(\pm I d, \Omega \cap \operatorname{ker} M, 0)= \pm 1 \\
& \neq 0
\end{aligned}
$$

Therefore condition (iii) of Theorem 1 holds and problem (1)-(2) has at least one solution in $\bar{\Omega}$.

4 Example

We will consider the following p-Laplacian boundary value problem
$\left(\phi_{3}\left(u^{\prime \prime}(t)\right)\right)^{\prime}=t+5 u(t)^{2}+12 \cos \left(u^{\prime}(t)^{2}\right)+12 u^{\prime \prime}(t)^{2}, t \in(0,1)$,

$$
\begin{aligned}
|w(t, a, b, c)| & \leq|t|+5|a|^{2}+12\left|\cos b^{2}\right|+12|c|^{2} \\
& =1+5|a|^{2}+12+12|c|^{2} \\
& =13+5|a|^{2}+12|c|^{2} .
\end{aligned}
$$

Since $x(t)=5, y(t)=0, z(t)=12, t \in(0,1)$, then

$$
\begin{aligned}
\phi_{q}(2)\left[\|x\|_{\infty}^{q-1}\right. & \left.+\|y\|_{\infty}^{q-1}+\|z\|_{\infty}^{q-1}\right]=2^{-\frac{1}{3}}\left[5^{-\frac{1}{3}}+12^{-\frac{1}{3}}\right] \\
& =0.6934(0.5848+0.4368)=0.7083<1
\end{aligned}
$$

Therefore, condition $\left(E_{1}\right)$ is satisfied.
Next we show that condition $\left(E_{2}\right)$ holds. Let $D=3$. and $u \in \operatorname{dom} M$. if $|u(t)|>D, t \in(0,1)$, then either $u(t)>D$ or $u(t)<-D$.
For $u(t)>D$, we have

$$
\begin{align*}
& \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w\left(v, u, u^{\prime}, u^{\prime \prime}\right) d v d t \\
& =4 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 u^{2}+12\left(\cos \left(u^{\prime}\right)^{2}+12\left(u^{\prime \prime}\right)\right) d v d t\right. \\
& -2 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 u^{2}+12 \cos \left(u^{\prime}\right)^{2}+12\left(u^{\prime \prime}\right)^{2}\right) d v d t \\
& >4 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 D^{2}-12+12 D^{2}\right) d v d t \\
& -2 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 D^{2}-12+12 D^{2}\right) d v d t \\
& >\frac{17}{4} D^{2}-\frac{47}{24}>0 \tag{17}
\end{align*}
$$

Similarly, if $u(t)<-D$, then

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w\left(v, u, u^{\prime}, u^{\prime \prime}\right) d v d t \\
& =4 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 u^{2}+12 \cos \left(u^{\prime}\right)^{2}+12\left(u^{\prime \prime}\right)^{2}\right) d v d t \\
& -2 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+5 u^{2}+12 \cos \left(u^{\prime}\right)^{2}+12\left(u^{\prime \prime}\right)^{2}\right) d v d t \\
& <4 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v-5 D^{2}+12-12 D^{2}\right) d v d t \\
& -2 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v-5 D^{2}+12-12 D^{2}\right) d v d t \\
& <\frac{73}{24}-\frac{17}{4} D^{2}<0
\end{aligned}
$$

Therefore, condition $\left(E_{2}\right)$ holds.
Finally, we will show that condition $\left(E_{3}\right)$ holds. Here,

$$
\begin{aligned}
& d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w(v, d, 0,0) d v d t \\
& =d\left[4 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+\frac{1}{5} d\right) d v d t-2 \int_{0}^{\frac{1}{2}} \int_{0}^{t}\left(v+\frac{1}{5} d\right) d v d t\right] \\
& =d\left[\frac{1}{20} d+\frac{1}{24}\right]
\end{aligned}
$$

Let $F=\frac{1}{6}>0$, then for $c \in \mathbb{R}$, such that $|d|>F$, then either $d>F$ or $d<-F$. For $d>F$, we have

$$
d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w(v, d, 0,0) d v d t>0
$$

while for $d<F$,

$$
d \cdot \sum_{i=1}^{m} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{t} w(v, d, 0,0) d v d t<0
$$

Thus, Condition $\left(E_{3}\right)$ is holds. The p-Laplacian problem (13) - (14) has at least one solution in $C^{2}[0,1]$ since it satisfies Theorem 2.

References

[1] Z. Bai, "Solvability for a class of fractional m-point boundary value problem at resonance," Comput. Math. Appl., vol. 62, no. 3, pp. 1292-1302, 2011.
[2] B. Du, and X. Hu, "A new continuation theorem for the existence of solutions to p-Laplacian BVP at resonance," Appl. Math. Comput," vol. 208, pp. 172-176, 2009.
[3] W. Feng, and J.R.L. Webb, " Solvability of three point boundary value problems at resonance," Nonlinear Anal. vol. 30, pp. 3227-3238, 1997.
[4] W. Ge, and J. Ren, "An extension of Mawhins continuation theorem and its application to boundary value problems with a p-Laplacain," Nonlinear Anal. vol. 58, pp. 477-488, 2004.
[5] S. A. Iyase, "On a third-order boundary value problem at resonance on the half-line," Arab. J. Math., vol. 8, pp. 43-53, 2019.
[6] S. A. Iyase, and O. F. Imaga, "On a singular secondorder multipoint boundary value problem at resonance," Intern. J. of Diff. Equ. 2017, Art. ID. 8579065, https://doi.org/10.1155/2017/8579065
[7] W. Jiang, "Solvability for p-Laplacian boundary value problem at resonance on the half-line," Bound. Value Probl., vol. 207, 2013, doi:10.1186/1687-2770-2013-207.
[8] B. Liu, and J. Yu, "Solvability of multi-point boundary value problem at resonance (I)," Indian J. Pure Appl. Math., vol. 33, pp. 475-494, 2002.
[9] X. Lin, B. Zhao, and Z. Du, "A third-order multipoint boundary value problem at resonance with one three dimensional kernel space," Carpathian J. Math., vol. 30 no. 1, pp. 93-100, 2014.
[10] X. Lin, and Q. Zhang, "Existence of solution for a p-Laplacian multi-point boundary value problem at resonance," Qual. Theory Dyn. Syst., doi 10.1007/s12346-017-0259-7.
[11] B. Liu, "Solvability of multi-point boundary value problem at resonance (II)," Appl. Math. Comput., vol. 136, pp. 353-377, 2003.
[12] Y. Liu, D. Li, and M. Fang, "Solvability for secondorder m-point boundary value problems at resonance on the half-line," Electron. J. Differential Equations, vol. 13, No. 3, pp. 1-11, 2009.
[13] J. Mawhin, "Topological degree methods in nonlinear boundary value problems," NSFCMBS, Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
[14] J. Yin, and Z. Du, "A second order differential equation with generalized SturmLiouville integral boundary conditions at resonance," Filomat vol. 28, pp. 1437-1444, 2014.
[15] Y. Wang, G. Zhang, and W. Ge, "Multi-point boundary value problems for one-dimensional pLaplacian at resonance," J. Appl. Math. Comput., vol. 22, pp. 361-372, 2006.
[16] W. Ge, "Boundary value problems for ordinary nonlinear differential equations," Science Press, Beijing, 2007.

