
Ain Shams Engineering Journal 13 (2022) 101713
Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect .com
A comparative analysis of numerical methods applied to nonsimilar
boundary layer-derived infinite series equations
https://doi.org/10.1016/j.asej.2022.101713
2090-4479/� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: oamoo@alumni.ucla.edu (O.M. Amoo).
O.M. Amoo a,⇑, R.O. Fagbenle a, M.O. Oyewola a,b

aDepartment of Mechanical Engineering, University of Ibadan, Oyo State, Nigeria
b School of Mechanical Engineering, Fiji National University, Samabula, Fiji

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 July 2021
Revised 24 September 2021
Accepted 8 January 2022

Keywords:
Boundary layer infinite series ODEs
Finite-element method
Runge–Kutta method
Newton–Raphson iteration
Numerical experiment
Merk–Chao–Fagbenle method
Circa 1958, Merk propounded a boundary layer procedure valid for both similarity and nonsimilarity
problems. It was notably the first asymptotic expansion to account for boundary layer nonsimilarity.
Due to an unfortunate error in the procedure, the method was later ameliorated by Chao and Fagbenle
and is today commonly referred to as the Merk-Chao-Fagbenle (MCF) method.
The objective in this work is an investigation to compare two numerical methods—the single-step mul-

tistage method known as the fourth-order Runge–Kutta method with the Newton–Raphson shooting iter-
ation as the root-finding algorithm (RK + Newton), and the finite-element method (FEM). In so doing, the
characteristic nonsimilar perturbation series boundary layer problem of Merk, Chao, and Fagbenle is
employed as a model. The novelty is to assess critical numerical performance indices of both numerical
techniques, which constitutes an undertaking that has yet to be elucidated, as far as the authors are
aware. Thus, this work departs from the norm and advances beyond previous efforts in literature by
emphasizing the numerical performances of two numerical methods rather than the sundry boundary
layer solutions, which in any case have been presented in previous works.
It is found that the numerical results obtained using both methods correlate very well with highly accu-

rate benchmarked results. The role of each method to evaluate the velocity functions (fs) and temperature
functions (hs) is visually depicted and described numerically. The computation and central processing
unit (CPU) times for the evaluation of f 0; f 1; f 2; f 3, and h0; h1; h2; h3 according to both the FEM and the
RK + Newton methods for element sizes of 10�3 and 10�4 reveal that the computation time of
RK + Newton is significantly less than that of the FEM for both values of the element size. On the other
hand, the CPU time of RK + Newton is less than that of the FEM for f 0, and h0 only. However, overall, FEM
is much more accurate.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Boundary layer flows are ubiquitous in many transport pro-
cesses. With the exponential growth of boundary layer research,
especially regarding advanced fluids known as nanofluids, there
have also been advances in numerical methods to solve the various
systems of differential equations that emerge.

Series-based expansion techniques, which date back to Blasius,
have continuously being developed. These were characteristically
established to solve nonsimilar boundary layer problems. They
are advantageous because many coefficients can be solved once
and for all. The corrected perturbation series procedure of Merk,
Chao, and Fagbenle (MCF, as it is commonly regarded) [1,2], which
is valid for both similar and nonsimilar laminar boundary layer
transfer problems, is a highly benchmarked technique [3]. Notably,
the more advanced form or examination of boundary layer theory
invokes an asymptotic framework known as the method of
matched asymptotic expansions of the series [4], which is the case
in the MCF procedure. Most boundary layer studies in present lit-
erature, for the sake of mathematical simplicity, consider similar
flows, as opposed to the more complex and physically meaningful
nonsimilar flows.

In nonsimilar flows, the external velocity rarely varies according
to x; instead, it is a function of both x and y. The surface boundary
conditions may not satisfy the requirements of similarity even if
the external velocity does. For nonsimilar flows, in comparison to
similar flows, the flow quantities are a function of the streamwise
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Abbreviations and Nomenclature

MCF Merk–Chao–Fagbenle
FEM Finite-element method
RK + Newton Runge–Kutta method with Newton–Raphson itera-

tion
ODE Ordinary differential equations
PDE Partial differential equations

Pr Prandtl number (-)
K wedge variable at the wall for velocity (-), defined in [2]
J Jacobian (-)
f ; f 0; f 00 dimensionless velocity functions (-)
h; h0; h00 dimensionless velocity functions (-)
g normal coordinate, a function of x; y (-)
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x-direction; that is, the flow quantities change along the stream-
wise x-direction. Thus, nonsimilar terms or streamwise derivatives
on the right-hand side of the equations essentially include the
effects of the streamwise boundary layer history and aid in elimi-
nating uncertainties found in many studies in the literature. This is
also important because the heat transfer coefficient in a laminar
boundary layer is strongly sensitive to the streamwise (or
upstream) history of the flow, which is often ignored or unac-
counted for in considerations of similar flows. The MCF method
is as uniquely suitable for nonsimilar flows as it is for similar flows
[5–7], which constitutes an important feature that is also partly
responsible for the success of the method. It is a wedge method
for obtaining locally similar solutions of the boundary layer equa-
tions. For a more expansive discussion of the MCF procedure, the
reader is referred to recent work by Fagbenle et al. [8].

The numerical solution of boundary layer differential equations
is a fundamental problem in fluid mechanics, such that not all
numerical methods may be applicable to or efficient when
employed against particular problems. Boundary layer problems
may either involve similarity solutions or nonsimilarity solutions.
Characteristically, however, most fluid boundary layer problems
are nonsimilar. The nonsimilar problems are more complex to
solve, but notably more generally valid industrially.

There have been many recent similar and nonsimilar boundary
layer studies. In reviewing and discussing these works, we empha-
size numerical techniques employed, while de-emphasizing the
sundry boundary layer findings. The sundry boundary layer solu-
tions of the MCF problem may be found in [2] and are not repeated
here.

Hayat et al. solved their boundary layer problem using the
recently proposed homotopy analysis method, indicating its flexi-
bility toward series solutions [9]. Khan et al. employed the usual
shooting method to obtain sundry boundary layer solutions to
the problem of incompressible, steady magnetohydrodynamic
(MHD) Casson flow with the presence of chemical reactions [10].
In another work, regarding both boundary layer and entropy gen-
eration for the non-Newtonian Jeffrey fluid, a shooting technique is
also employed to obtain solutions to the problem [11]. A dimen-
sionless set of nonlinear PDEs obtained from the usual transforma-
tion of the problem of carbon nanotube nanofluid transfer over
stretching surfaces is solved using the finite difference method in
[12] to obtain solutions, indicating that the Nusselt number
decreases for larger values of nanoparticle volume fraction. A
fourth-order Runge–Kutta integration scheme is employed for
the solution of nonlinear ODEs to emanate from the problem of
non-Newtonian nanofluid flow with applications for optimizing
solar energy [13].

Another variant of the homotopy analysis method is the homo-
topy perturbation method, which was employed in [14] to solve
entropy generation of three-dimensional hybrid nanofluid flow,
showing increases in the performance of both the Nusselt number
and skin friction coefficient as compared to a base fluid of water. A
fifth-order Runge–Kutta method was employed regarding a bio-
2

fluid problem for nanoparticle three-dimensional crossflow over
a cylinder, revealing enhancements in bioconvection [15].

The FEM was employed in [16] for a cavity enclosure problem
with hybrid nanofluids, showing significant improvements in the
Nusselt number. The FEM is similarly employed in [17].

A fifth-order Runge –Kutta –Fehlberg numerical method was
employed in [18–21] for various problems where the boundary
layer is applied.

To improve the numerical knowledge of these types of equa-
tions, two distinct numerical methods are compared in the compu-
tation of the differential equations—the single-step multistage
method known as the fourth-order Runge –Kutta method with
the Newton –Raphson shooting iteration as the root-finding algo-
rithm (RK + Newton), and the finite-element method (FEM). The
former has been widely applied by researchers, while the latter
was recently developed in the literature, for the first time, in the
context of the MCF-type of equations. This work numerically com-
putes the solutions using the two aforementioned numerical meth-
ods and makes comparisons accordingly.

Numerical computations and analyses are par for the course in
engineering. In fluid mechanics, it is a critical tool for the assess-
ment and understanding of flow phenomena, when done correctly.
Numerical analysis is a practical applied subject of mathematics.
Numerical methods for solving differential equations comprise an
important theme and tool in theoretical fluid mechanics. Numeri-
cal fluid mechanics is an area that continues to gain significance. In
boundary layers, many numerical techniques are available to
resolve the complex differential equations that emanate from the
PDE-to-ODE transformations. In general, numerous techniques
exist, such as the Keller box method, finite difference, finite ele-
ment, and the popular Runge–Kutta method, to name a few. Any
of these methods may be used to solve boundary layer problems,
however, and as previously mentioned, not all numerical methods
may be applicable or efficient when employed against particular
problems.

Table 1 depicts the numerical techniques that have to date been
employed for some research on the MCF-type equations. It is
observed that the fourth-order Runge–Kutta technique is popularly
used by researchers to solve the differential equations and advance
the solution, whereas various root finding algorithms (e.g., New-
ton–Raphson) are employed. The Runge–Kutta method is a
superbly honed approach to solve a large class of linear and nonlin-
ear differential equations and continues to receive wide acceptance
for use in both external and internal flows. The Runge–Kutta
method has been supported and made famous by many textbooks
and research papers. In principle, any root finding algorithm may
potentially be used. Some other notable root finding algorithms
are the bisection method, the secant method, and the Nacht-
sheim–Swigert method [22], to name a few. The reader may also
refer to Rogers [23], Carnahan [24], and Kutz [25]. Carnahan [23],
Kutz [24], and Rogers [25]. The choice of the root finding algorithm
has no bearing per se on the numerical results; however, they dif-
fer by the number of iterations or computations employed to



Table 1
Salient summary of numerical techniques employed by researchers to solve the MCF-
type differential equations.

No. Numerical Method Reference

1 Fourth-order Runge–Kutta with step size control and
Newton–Raphson method

[27]

2 Fourth-order Runge–Kutta [28]
3 A multiple shooting method using subroutine DTPTB from

the International Mathematical and Statistics Library
[29]

4 An explicit Runge–Kutta–Fehlberg or RK45 method [30]
5 Fourth-order Runge–Kutta with an automatic interval-

halving based step-size adjustment and the shooting
method

[31]

6 Fouth-order Runge–Kutta with Newton–Raphson [32]
7 Fouth-order Runge–Kutta [33]
8 Fouth-order Runge–Kutta [34]
9 Fouth-order Runge–Kutta using double precision with

Adams–Moulton predictor–corrector method
[35]

10 Fouth-order Runge–Kutta with a least-squares
convergence criterion for zeroth-order equations and
Newton–Raphson iteration scheme for higher-order

equations.

[36]

11 Fouth-order Runge–Kutta with Newton–Raphson
shooting technique and method of continuation

[37]

12 Fouth-order Runge–Kutta with a uniform step size [38]
13 Nachtsheim–Swigert shooting technique [39]
14 Fouth-order Runge–Kutta [40]
15 Fouth-order Runge–Kutta with Nachtsheim–Swigert

technique
[41]

16 Fouth-order Runge–Kutta [42]
17 Fouth-order Runge–Kutta with Newton iterative scheme [43]
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obtain the numerical result [8]. Generally, the accuracy of the
fourth-order Runge–Kutta integration scheme with any root find-
ing algorithm for boundary layer differential equations is well
within allowable engineering limits or requirements, hence its
wide applicability to engineering problems in general and fluid
mechanics problems in particular. Significant efforts have indeed
been expended to develop numerical approaches for a wide array
of ordinary differential equations in years past. Recently, for the
first time, a FEM technique for solving the MCF-type equations
(or higher-order approximations of MCF-type equations) was
advanced by Amoo et al. [26]. By contrast, however, relatively little
has been done about assessing the performance of the numerical
methods employed for solving MCF-type equations, thus creating
a knowledge gap to be filled.

Against this background, it is evident that researchers have
employed several numerical techniques for which the numerical
performances of the numerical methods have not clearly been
demonstrated.

Motivated by the prominent role numerical methods play in
boundary layer studies, the present purpose and novelty highlights
key performance indices of the FEM technique described in Amoo
et al. [26] with the popularly employed RK + Newton technique to
solve a coupled system of nonlinear ordinary differential equa-
tions. Therefore, this effort is a necessary undertaking in peer-
reviewed research that sheds light on the efficiency of numerical
methods for particular types of problems or parameters, and on
opportunities for future development. In any event, the research
is pedagogical, explaining several technical aspects associated with
the performances of both numerical methods, thus providing
insights hitherto unknown.
2. Method of solution using fourth-order Runge–Kutta with
Newton–Raphson shooting iteration

As indicated previously, the aim is to experiment numerically
and compare the performances of two methods - the finite element
method described in [26] and the Runge–Kutta method with New-
3

ton–Raphson shooting iteration (RK + Newton). In this section, we
apply the RK + Newton procedure for solving the following MCF
coupled systems of ordinary differential equations with corre-
sponding boundary conditions [2]:

f 0000 þ f 0f
00
0 þK½1� ðf 00Þ

2� ¼ 0;
f 0ð0Þ ¼ f 00ð0Þ ¼ 0; f 00ð1Þ ¼ 1;

(

f 0001 þ f 0f
00
1 � 2ð1þKÞf 00f 01 þ 3f 000f 1 ¼ Jðf 00; f 0Þ;

f 1ð0Þ ¼ f 01ð0Þ ¼ 0; f 01ð1Þ ¼ 0;

(

f 0002 þ f 0f
00
2 � 2ð2þKÞf 00f 02 þ 5f 000f 2 ¼ f 00f

0
1 � f 000f 1;

f 2ð0Þ ¼ f 02ð0Þ ¼ 0; f 02ð1Þ ¼ 0;

(

f 0003 þ f 0f
00
3 � 2ð2þKÞf 00f 03 þ 5f 000f 3 ¼ Jðf 01; f 0Þ þ Jðf 00; f 1Þ þ ð2þKÞðf 01Þ

2 � 3f 1f
00
1;

f 3ð0Þ ¼ f 03ð0Þ ¼ 0; f 03ð1Þ ¼ 0;

(

Pr�1h000 þ f 0h
0
0 ¼ 0;

h0ð0Þ ¼ 0; h0ð1Þ ¼ 1;

(

Pr�1h001 þ f 0h
0
1 � 2f 00h1 ¼ Jðh0; f 0Þ � 3f 1h

0
0;

h1ð0Þ ¼ 0; h1ð1Þ ¼ 0;

(

Pr�1h002 þ f 0h
0
2 � 4f 00h2 ¼ f 00h1 � f 1h

0
0 � 5f 2h

0
0;

h2ð0Þ ¼ 0; h2ð1Þ ¼ 0;

(

Pr�1h003 þ f 0h
0
3 � 4f 00h3 ¼ Jðh1; f 0Þ þ Jðh0; f 1Þ þ 2f 01h1 � 3f 1h

0
1 � 5f 3h

0
0;

h3ð0Þ ¼ 0; h3ð1Þ ¼ 0;

(

Here,

Jðf 00; f 0Þ :¼
@ðf 00; f 0Þ
@ðK;gÞ ¼ @f 00

@K
� @f 0
@g

� @f 00
@g

� @f 0
@K

is the Jacobian.
The preceding equations (attributable to [2]) emanate from rou-

tine boundary layer transformations for an incompressible laminar
two-dimensional or axisymmetric steady flow about a body of rev-
olution. While it is possible for an incompressible fluid to have
variable density, the problem assumes unit density, for simplicity.
The transformed MCF equations are nonlinear ODEs. They are also
one dimensional (or 1-D), meaning there is one independent vari-
able and there is one dependent variable. The geometry involved is
the domain of the independent variable, which is the simple real
semi-axis.

Also, the preceding equations are a set of singularly perturbed
problems expressed to four-terms of the series. Notably, the ana-
lytical technique of singular perturbation theory (SPT) has a
lengthy history and has been applied in different ways in different
fields. A consequence of SPT, as observed from the preceding equa-
tions, yields a sequence or hierarchy of asymptotic approxima-
tions, each with a higher-order of accuracy than its predecessor.
The development of numerical methods for these higher-order
approximations continues to be an active area of research.

The proposition behind combining the two methods, i.e.,
Runge–Kutta and Newton–Raphson, is the following. The third-
order differential equation with respect to the velocity function
f 0 is accompanied by two initial conditions on f 0 and f 00, as well
as with a condition on f 00 at infinity. In another regard, in order
to be able to apply the Runge–Kutta method to approximate f 0,
we need to specify the third initial condition on f 000. To do so, we
employ the Newton–Raphson method to the equation
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1� f 00ð1Þ ¼ 0:

Recall that the Newton–Raphson method suggests an iterative pro-
cess for approximating real roots of nonlinear algebraic equations of
the form

FðxÞ ¼ 0:

The nth step of the iterative process is given by

xnþ1 ¼ xn � FðxnÞ
F 0ðxnÞ

:

It should be remarked that in this particular case, any root finding
algorithm may be used, but in general, convergence problems
may occur. The Newton–Raphson algorithm is an iterative proce-
dure that is particularly quick, having rapid convergence and used
by the majority of computational fluid dynamics codes. Thus, after
approximating the initial value f 000, we obtain a consistent initial-
value problem for a third-order nonlinear differential equation with
respect to f 0, which can then be solved numerically by employing
the fourth-order Runge–Kutta method. For the general steps of
the Runge–Kutta method, the reader is referred to [44]. Ascher
and Petzold (1998). In the following, we show the key steps applied
to discretize the preceding coupled systems of ordinary differential
equations.

For f 0, we denote,

f 00 ¼ U; f 000 ¼ U0 ¼ G:

Then,

G0 ¼ �f 0G�K 1� Uð Þ2
h i

:

Therefore, the discretization coefficients are given as,

k11 ¼ Un; k12 ¼ Gn; k13 ¼ �f 0nGn �K 1� Unð Þ2
h i

; k21

¼ Un þ dg
k12
2

;

k22 ¼ Gn þ dg
k13
2

;

k23 ¼ � f 0n þ dg
k11
2

� �
Gn þ dg

k13
2

� �
�K 1� Un þ dg

k12
2

� �2
" #

;

k31 ¼ Un þ dg
k22
2

; k32 ¼ Gn þ dg
k23
2

;

k33 ¼ � f 0n þ dg
k21
2

� �
Gn þ dg

k23
2

� �
�K 1� Un þ dg

k22
2

� �2
" #

;

k41 ¼ Un þ dgk32; k42 ¼ Gn þ dgk33;

k43 ¼ � f 0n þ dgk31ð Þ Gn þ dgk33ð Þ �K 1� Un þ dgk32ð Þ2
h i

;

where the unknown coefficients are defined as follows:

f 0 nþ1ð Þ ¼ f 0n þ
dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ;

Gnþ1 ¼ Gn þ dg
6

k13 þ 2k23 þ 2k33 þ k43ð Þ:
4

The update of the iteration parameter is defined as follows:

gnþ1 ¼ gn þ dg:

Similarly, the procedure proceeds with the solution of the initial-
value problem for f 1. The steps of the Runge–Kutta method are as
follows:

f 01 ¼ U; f 001 ¼ U0 ¼ G;

G0 ¼ �f 0 K;gð ÞGþ 2 1þKð Þf 00 K;gð ÞU � 3f 000 K;gð Þf 1 þ
@ f 00; f 0
� �
@ K;gð Þ :

Therefore, the discretization coefficients are given as

k11 ¼ Un; k12 ¼ Gn;

k13 ¼ �f 0 K;gnð ÞGn þ 2 1þKð Þf 00 K;gnð ÞUn � 3f 000 K;gnð Þf 1n

þ @ f 00; f 0
� �

@ K;gnð Þ ;

k21 ¼ Un þ dg
k12
2

; k22 ¼ Gn þ dg
k13
2

;

k23 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k13

2

� �
þ 2 1þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k12

2

� �
�

�3f 000 K;gn þ dg
2

� �
f 1n þ dg k11

2

� �
þ @ f 00 ;f 0ð Þ

@ K;gnþdg
2ð Þ ;

k31 ¼ Un þ dg
k22
2

; k32 ¼ Gn þ dg
k23
2

;

k33 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k23

2

� �
þ 2 1þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k22

2

� �
�

�3f 000 K;gn þ dg
2

� �
f 1n þ dg k21

2

� �
þ @ f 00 ;f 0ð Þ

@ K;gnþdg
2ð Þ ;

k41 ¼ Un þ dgk32; k42 ¼ Gn þ dgk33;

k43 ¼ �f 0 K;gn þ dgð Þ Gn þ dgk33ð Þ þ 2 1þKð Þf 00 K;gn þ dgð Þ Un þ dgk32ð Þ�
�3f 000 K;gn þ dgð Þ f 1n þ dgk31ð Þ þ @ f 00 ;f 0ð Þ

@ K;gnþdgð Þ ;

where the unknown coefficients are defined as follows:

f 1 nþ1ð Þ ¼ f 1n þ
dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ;

Gnþ1 ¼ Gn þ dg
6

k13 þ 2k23 þ 2k33 þ k43ð Þ:

Similarly, for f 2,

f 02 ¼ U; f 002 ¼ U0 ¼ G;

G0 ¼ �f 0 K;gð ÞGþ 2 2þKð Þf 00 K;gð ÞU � 5f 000 K;gð Þf 2þ
þf 00 K;gð Þf 01 K;gð Þ � f 000 K;gð Þf 1 K;gð Þ;

the discretization coefficients are given as

k11 ¼ Un; k12 ¼ Gn;

k13 ¼ �f 0 K;gnð ÞGn þ 2 2þKð Þf 00 K;gnð ÞUn � 5f 000 K;gnð Þf 2nþ
þf 00 K;gnð Þf 01 K;gnð Þ � f 000 K;gnð Þf 1 K;gnð Þ;

k21 ¼ Un þ dg
k12
2

; k22 ¼ Gn þ dg
k13
2

;
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k23 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k13

2

� �
þ 2 2þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k12

2

� �
�

�5f 000 K;gn þ dg
2

� �
f 2n þ dg k11

2

� �
þ f 00 K;gn þ dg

2

� �
f 01 K;gn þ dg

2

� �
�

�f 000 K;gn þ dg
2

� �
f 1 K;gn þ dg

2

� �
;

k31 ¼ Un þ dg
k22
2

; k32 ¼ Gn þ dg
k23
2

;

k33 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k23

2

� �
þ 2 2þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k22

2

� �
�

�5f 000 K;gn þ dg
2

� �
f 2n þ dg k21

2

� �
þ f 00 K;gn þ dg

2

� �
f 01 K;gn þ dg

2

� �
�

�f 000 K;gn þ dg
2

� �
f 1 K;gn þ dg

2

� �
;

k41 ¼ Un þ dgk32; k42 ¼ Gn þ dgk33;

k43 ¼ �f 0 K;gn þ dgð Þ Gn þ dgk33ð Þ þ 2 2þKð Þf 00 K;gn þ dgð Þ Un þ dgk32ð Þ�
�5f 000 K;gn þ dgð Þ f 2n þ dgk31ð Þ þ f 00 K;gn þ dgð Þf 01 K;gn þ dgð Þ�
�f 000 K;gn þ dgð Þf 1 K;gn þ dgð Þ;

where the unknown coefficients are defined as follows:

f 2 nþ1ð Þ ¼ f 2n þ
dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ;

Gnþ1 ¼ Gn þ dg
6

k13 þ 2k23 þ 2k33 þ k43ð Þ:

Similarly, for f 3,

f 03 ¼ U; f 003 ¼ U0 ¼ G;

G0 ¼ �f 0 K;gð ÞGþ 2 2þKð Þf 00 K;gð ÞU � 5f 000 K;gð Þf 3 þ
@ f 01 ;f 0ð Þ
@ K;gð Þ þ @ f 00 ;f 1ð Þ

@ K;gð Þ þ
þ 2þKð Þ f 01 K;gð Þ� �2 � 3f 1 K;gð Þf 001 K;gð Þ;

the discretization coefficients are given as

k11 ¼ Un; k12 ¼ Gn;

k13 ¼ �f 0 K;gnð ÞGn þ 2 2þKð Þf 00 K;gnð ÞUn � 5f 000 K;gnð Þf 3n þ
@ f 01 ;f 0ð Þ
@ K;gnð Þ

þ @ f 00 ;f 1ð Þ
@ K;gnð Þ þ 2þKð Þ f 01 K;gnð Þ� �2 � 3f 1 K;gnð Þf 001 K;gnð Þ;

k21 ¼ Un þ dg
k12
2

; k22 ¼ Gn þ dg
k13
2

;

k23 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k13

2

� �
þ 2 2þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k12

2

� �
�

�5f 000 K;gn þ dg
2

� �
f 3n þ dg k11

2

� �
þ @ f 01 ;f 0ð Þ

@ K;gnþdg
2ð Þ þ

@ f 00 ;f 1ð Þ
@ K;gnþdg

2ð Þþ

þ 2þKð Þ f 01 K;gn þ dg
2

� �� �2
� 3f 1 K;gn þ dg

2

� �
f 001 K;gn þ dg

2

� �
;

k31 ¼ Un þ dg
k22
2

; k32 ¼ Gn þ dg
k23
2

;

k33 ¼ �f 0 K;gn þ dg
2

� �
Gn þ dg k23

2

� �
þ 2 2þKð Þf 00 K;gn þ dg

2

� �
Un þ dg k22

2

� �
�

�5f 000 K;gn þ dg
2

� �
f 3n þ dg k21

2

� �
þ @ f 01 ;f 0ð Þ

@ K;gnþdg
2ð Þ þ

@ f 00 ;f 1ð Þ
@ K;gnþdg

2ð Þþ

þ 2þKð Þ f 01 K;gn þ dg
2

� �� �2
� 3f 1 K;gn þ dg

2

� �
f 001 K;gn þ dg

2

� �
;

k41 ¼ Un þ dgk32; k42 ¼ Gn þ dgk33;
5

k43 ¼ �f 0 K;gn þ dgð Þ Gn þ dgk23ð Þ þ 2 2þKð Þf 00 K;gn þ dgð Þ Un þ dgk22ð Þ�
�5f 000 K;gn þ dgð Þ f 3n þ dgk21ð Þ þ @ f 01 ;f 0ð Þ

@ K;gnþdgð Þ þ
@ f 00 ;f 1ð Þ

@ K;gnþdgð Þ þ
þ 2þKð Þ f 01 K;gn þ dgð Þ� �2 � 3f 1 K;gn þ dgð Þf 001 K;gn þ dgð Þ;

where the unknown coefficients are defined as follows:

f 3 nþ1ð Þ ¼ f 3n þ
dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ;

Gnþ1 ¼ Gn þ dg
6

k13 þ 2k23 þ 2k33 þ k43ð Þ:

The preceding concludes the expressions for the velocity functions.
A similar approach is applied for the temperature functions in what
follows. For h0,

h00 ¼ U; U0 ¼ �Prf0 K;gð ÞU;
the discretization coefficients are given as

k11 ¼ Un; k12 ¼ �Prf0 K;gnð ÞUn; k21 ¼ Un þ dg
k12
2

;

k22 ¼ �Prf0 K;gn þ
dg
2

� �
Un þ dg

k12
2

� �
;

k31 ¼ Un þ dg
k22
2

;

k32 ¼ �Prf0 K;gn þ
dg
2

� �
Un þ dg

k22
2

� �
;

k41 ¼ Un þ dgk32; k42 ¼ �Prf0 K;gn þ dgð Þ Un þ dgk32ð Þ;
where the unknown coefficients are defined as follows:

h0 nþ1ð Þ ¼ h0n þ dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ:

For h1,

h01 ¼ U;

U0 ¼ Pr �f 0 K;gð ÞU þ 2f 00 K;gð Þh1 þ @ h0; f 0ð Þ
@ K;gð Þ � 3f 1 K;gð Þh00 K;gð Þ

� �
;

the discretization coefficients are given as

k11 ¼ Un;

k12 ¼ Pr �f 0 K;gnð ÞUn þ 2f 00 K;gnð Þh1n þ @ h0; f 0ð Þ
@ K;gnð Þ � 3f 1 K;gnð Þh00 K;gnð Þ

� �
;

k21 ¼ Un þ dg
k12
2

;

k22 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k12

2

� �
þ 2f 00 K;gn þ dg

2

� �
h1n þ dg k11

2

� �
þ

�
þ @ h0 ;f 0ð Þ

@ K;gnþdg
2ð Þ � 3f 1 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� ��
;

k31 ¼ Un þ dg
k22
2

;
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k32 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k22

2

� �
þ 2f 00 K;gn þ dg

2

� �
h1n þ dg k21

2

� �
þ

�
þ @ h0 ;f 0ð Þ

@ K;gnþdg
2ð Þ � 3f 1 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� ��
;

k41 ¼ Un þ dgk32;

k42 ¼ Pr �f 0 K;gn þ dgð Þ Un þ dgk32ð Þ þ 2f 00 K;gn þ dgð Þ h1n þ dgk31ð Þþ�
þ @ h0 ;f 0ð Þ

@ K;gnþdgð Þ � 3f 1 K;gn þ dgð Þh00 K;gn þ dgð Þ
�
;

where the unknown coefficients are defined as follows:

h1 nþ1ð Þ ¼ h1n þ dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ:

For h2,

h02 ¼ U;

U0 ¼ Pr �f 0 K;gð ÞU þ 4f 00 K;gð Þh2 þ f 00 K;gð Þh1 K;gð Þ � f 1 K;gð Þh00 K;gð Þ��
�5f 2 K;gð Þh00 K;gð Þ�;

the discretization coefficients are given as

k11 ¼ Un;

k12 ¼ Pr �f 0 K;gnð ÞUn þ 4f 00 K;gnð Þh2n þ f 00 K;gnð Þh1 K;gnð Þ��
�f 1 K;gnð Þh00 K;gnð Þ � 5f 2 K;gnð Þh00 K;gnð Þ�;

k21 ¼ Un þ dg
k12
2

;

k22 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k12

2

� �
þ 4f 00 K;gn þ dg

2

� �
h2n þ dg k11

2

� �
þ

�
þf 00 K;gn þ dg

2

� �
h1 K;gn þ dg

2

� �
� f 1 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� �
�

�5f 2 K;gn þ dg
2

� �
h00 K;gn þ dg

2

� ��
;

k31 ¼ Un þ dg
k22
2

;

Fig. 1. Comparison of L2 and L1

6

k32 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k22

2

� �
þ 4f 00 K;gn þ dg

2

� �
h2n þ dg k21

2

� �
þ

�
þf 00 K;gn þ dg

2

� �
h1 K;gn þ dg

2

� �
� f 1 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� �
�

�5f 2 K;gn þ dg
2

� �
h00 K;gn þ dg

2

� ��
;

k41 ¼ Un þ dgk32;

k42 ¼ Pr �f 0 K;gn þ dgð Þ Un þ dgk32ð Þ þ 4f 00 K;gn þ dgð Þ h2n þ dgk31ð Þþ�
þf 00 K;gn þ dgð Þh1 K;gn þ dgð Þ � f 1 K;gn þ dgð Þh00 K;gn þ dgð Þ�
�5f 2 K;gn þ dgð Þh00 K;gn þ dgð Þ�;

where the unknown coefficients are defined as follows:

h2 nþ1ð Þ ¼ h2n þ dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ:

For h3,

h03 ¼ U;

U0 ¼ Pr �f 0 K;gð ÞU þ 4f 00 K;gð Þh3 þ @ h1 ;f 0ð Þ
@ K;gð Þ þ @ h0 ;f 1ð Þ

@ K;gð Þ þ 2f 01 K;gð Þh1 K;gð Þ�
�

�3f 1 K;gð Þh01 K;gð Þ � 5f 3 K;gð Þh00 K;gð Þ�;
the discretization coefficients are given as

k11 ¼ Un;

k12 ¼ Pr �f 0 K;gnð ÞUn þ 4f 00 K;gnð Þh3n þ @ h1 ;f 0ð Þ
@ K;gnð Þ þ @ h0 ;f 1ð Þ

@ K;gnð Þ þ
�

þ2f 01 K;gnð Þh1 K;gnð Þ � 3f 1 K;gnð Þh01 K;gnð Þ�
�5f 3 K;gnð Þh00 K;gnð Þ�;

k21 ¼ Un þ dg
k12
2

;

k22 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k12

2

� �
þ 4f 00 K;gn þ dg

2

� �
h3n þ dg k11

2

� �
þ

�
þ @ h1 ;f 0ð Þ

@ K;gnþdg
2ð Þ þ

@ h0 ;f 1ð Þ
@ K;gnþdg

2ð Þ þ 2f 01 K;gn þ dg
2

� �
h1 K;gn þ dg

2

� �
�

�3f 1 K;gn þ dg
2

� �
h01 K;gn þ dg

2

� �
� 5f 3 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� ��
;

errors vs. step size for f 0.



Fig. 2. Comparison of L2 and L1 errors vs. step size for f 1.

Fig. 3. Comparison of L2 and L1 errors vs. step size for f 2.
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k31 ¼ Un þ dg
k22
2

;

k32 ¼ Pr �f 0 K;gn þ dg
2

� �
Un þ dg k22

2

� �
þ 4f 00 K;gn þ dg

2

� �
h3n þ dg k21

2

� �
þ

�
þ @ h1 ;f 0ð Þ

@ K;gnþdg
2ð Þ þ

@ h0 ;f 1ð Þ
@ K;gnþdg

2ð Þ þ 2f 01 K;gn þ dg
2

� �
h1 K;gn þ dg

2

� �
�

�3f 1 K;gn þ dg
2

� �
h01 K;gn þ dg

2

� �
� 5f 3 K;gn þ dg

2

� �
h00 K;gn þ dg

2

� ��
;

k41 ¼ Un þ dgk32;

k42 ¼ Pr �f 0 K;gn þ dgð Þ Un þ dgk32ð Þ þ 4f 00 K;gn þ dgð Þ h3n þ dgk31ð Þþ�
þ @ h1 ;f 0ð Þ

@ K;gnþdgð Þ þ @ h0 ;f 1ð Þ
@ K;gnþdgð Þ þ 2f 01 K;gn þ dgð Þh1 K;gn þ dgð Þ�

�3f 1 K;gn þ dgð Þh01 K;gn þ dgð Þ � 5f 3 K;gn þ dgð Þh00 K;gn þ dgð Þ�;
where the unknown coefficients are defined as follows:
7

h3 nþ1ð Þ ¼ h3n þ dg
6

k11 þ 2k21 þ 2k31 þ k41ð Þ;

Unþ1 ¼ Un þ dg
6

k12 þ 2k22 þ 2k32 þ k42ð Þ:

The developed steps in this section are translated into the MATLAB
computer program. MATLAB facilitates implementation through the
several toolboxes available for numerical analysis.
3. Results and discussion

This section discusses the findings of the numerical analysis, as
well as their comparisons. It is noteworthy that according to Chao
and Fagbenle [2], all derivatives with respect to the wedge param-
eter, required for the evaluation of the Jacobians, are approximated
according to the composite finite difference rule



Fig. 4. Comparison of L2 and L1 errors vs. step size for f 3.

Fig. 5. Comparison of L2 and L1 errors vs. step size for h0.
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@f
@K

� �f ðKþ 2DK;gÞ þ 8f ðKþ DK;gÞ � 8f ðK� DK;gÞ þ f ðK� 2DK;gÞ
12DK

and the choice was DK ¼ 10�3.

3.1. Comparison of RK + Newton and FEM

In this sub-section, the performances of both techniques are
assessed. Figs. 1–8 show L2 and L1 error plots for solutions
obtained here and that obtained by FEM in [13] as a function of
the step size. For comparisons, we have chosen D = 0.0001: 0.1.
The L2 and L1 errors are given as follows:

jjf jjL2 ½0;g1�¼g1
0 f 2ðgÞdg; jjf jjL1½0;g1� ¼ supg2½0;g1�jf ðgÞj:

This form of the L2 and L1 errors is mathematically quite elegant.
The L2 error describes the integral of the square of the difference
8

between the two functions (n and n - 1), whereas the L1 error
describes the maximal absolute value of the difference of these
functions.

It is observed from Fig. 1 that comparing L2 and L1 of approxi-
mation of f 0 for FEM and the present method (RK + Newton) here
shows both coincide, which implies that f 0 is approximated with
exactly the same accuracy (i.e. no discernible differences) by both
methods. This is important because high accuracy is often required
for the basic functions f 0 and h0 because the higher order functions
f 1; h1; f 2; h2, � � �, are sensitive to their variations. However, it is evi-
dent from Figs. 2–8 that for larger values of the step size FEM pro-
vides better accuracy than the RK + Newton method described
here. In another regard, it is observed that FEM requires consider-
ably more computational power as compared to RK + Newton,
which is discussed further in sub-Section 3.3. The error plots in
Figs. 1–8 essentially only have mathematical meanings that reflect



Fig. 6. Comparison of L2 and L1 errors vs. step size for h1.

Fig. 7. Comparison of L2 and L1 errors vs. step size for h2.

O.M. Amoo, R.O. Fagbenle and M.O. Oyewola Ain Shams Engineering Journal 13 (2022) 101713
mathematical facts for the respective parameters. These figures
simply show the differences between FEM and RK + Newton out-
puts according to the time step, and serve as evidence for conclu-
sions drawn.

3.2. Fluid boundary layer transfer

The premise in this section is simply to demonstrate good
agreement with other findings in the literature for key fluid bound-
ary layer parameters. This sub-section pertains to the fluid bound-
ary layer results of the numerical analyses by comparing the
RK + Newton findings here with FEM results in Amoo [26] and
the highly accurate benchmark results in work by Chao and Fag-
benle [2,3]. The comparisons are made numerically to assess the
results obtained qualitatively. It is observed from Tables 2–4 that
9

the findings are in good correlation for the heat transfer, nonsimi-
lar velocity functions, and nonsimilar temperature functions. The
tabulated comparisons are reflective of a small step size for accu-
racy. Larger values of the step size may be necessary in cases where
fast computations may be desired, without necessarily caring too
much for accuracy, and in this regard the FEM approach performs
better. It should also be remarked that the FEM is naturally ori-
ented towards minimizing errors in a global sense (the essence
of any numerical scheme is to minimize errors). The FEM is much
more powerful than the RK + Newton method for MCF-type prob-
lems or problems in which some of the boundary conditions are
given at infinity, both theoretically and practically. Overall, the
results are just about as accurate as those of other researchers
found in the literature. It is important to mention that in a study
assessing the performance of methodologies to predict heat trans-



Fig. 8. Comparison of L2 and L1 errors vs. step size for h3.

Table 2
Comparison of results between [2], FEM analysis in [26], and present analysis using RK + Newton for local heat transfer parameter, NuRe�

1
2 , for flow over an inclined surface;

Pr¼ 5ðNu ¼ hL=k; Re ¼ U1L=vÞ.

No. of terms in series [2]
x/L K 1 2 3 4

0.0675 �0.15 0.9408 0.9536 0.9547 0.9921
0.0465 �0.10 1.2237 1.2249 1.2257 1.2319
0.0241 �0.05 1.7989 1.7975 1.7978 1.7989
0.0541 0.10 1.3642 1.3681 1.3687 1.3695
0.4142 0.50 0.6654 0.6704 0.6730 0.6738
0.8257 0.70 0.5765 0.5798 0.5820 0.5824

No. of terms in series [26]
x/L K 1 2 3 4

0.0675 �0.15 0.94081 0.95355 0.95473 0.99202
0.0465 �0.10 1.2237 1.2249 1.2257 1.2319
0.0241 �0.05 1.7989 1.7975 1.7978 1.7989
0.0541 0.10 1.3642 1.3681 1.3687 1.3702
0.4142 0.50 0.66538 0.67039 0.67297 0.67667
0.8257 0.70 0.57652 0.57982 0.58201 0.58372

No. of terms in series (RK + Newton, this work)
x/L K 1 2 3 4

0.0675 �0.15 0.94081 0.95355 0.95472 0.99258
0.0465 �0.10 1.2237 1.2249 1.2257 1.232
0.0241 �0.05 1.7989 1.7975 1.7978 1.7989
0.0541 0.10 1.3642 1.3681 1.3687 1.3702
0.4142 0.50 0.66538 0.67039 0.67296 0.67676
0.8257 0.70 0.57653 0.57982 0.58201 0.58377
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fer, results obtained from the MCF methodology itself are 1– 3% in
agreement with experimental and other theoretical results, as
established in [3].

3.3. Comparison of computational efficiency

In this sub-section, comparisons are made for both the compu-
tation and CPU times for the evaluation of f 0; f 1; f 2; f 3, and
h0; h1; h2; h3 according to both the FEM and the RK + Newton meth-
ods for element sizes of 10�3 and 10�4, respectively. The CPU time
may be defined as the total time used by MATLAB from the time
the simulation was initiated. It may also be regarded as the execu-
tion time or operation count. On the other hand, the computational
10
time measures the elapsed time of different steps or parts of the
code. It is evident from Tables 5 and 6 that the computation time
of RK + Newton is significantly less than that of the FEM for both
values of the element size. In another regard, it is observed that
the CPU time for RK + Newton is less than that of the FEM for f 0
and h0 only.

Overall, robust numerical experiments and comparisons of
two numerical methods (the FEM and the RK + Newton meth-
ods) have been carried out on a model nonsimilar fluid boundary
layer problem, for which no relevant mathematical results
existed. Thus the authors believe this work provides a bench-
mark for which other numerical methods for solving similar
equations can be tested.



Table 4
Comparison of results between [2], FEM analysis in [26], and present analysis using RK + Newton for wall derivatives of temperature functions.

Universal functions: Wall derivatives of temperature functions [2]
K h00ðK;0Þ h01ðK;0Þ h02ðK;0Þ h03ðK;0Þ

�0.15 0.68330186 �0.05582850 �0.00279369 0.28400
�0.1 0.74362901 �0.01590380 �0.00546172 0.09337
�0.05 0.78434114 �0.00138098 �0.00605684 0.05020

0 0.81556125 0.00573642 �0.006131 0.03284
0.05 0.84103038 0.00969494 �0.00602159 0.02383
0.1 0.86259826 0.01204010 �0.00584057 0.01842
0.2 0.89789713 0.01433970 �0.00541959 0.01232

Universal functions: Wall derivatives of temperature functions [26]
K h00ðK;0Þ h01ðK;0Þ h02ðK;0Þ h03ðK;0Þ

�0.15 0.6833 �0.055828 �0.0027938 0.28394
�0.1 0.74363 �0.015904 �0.0054617 0.09337
�0.05 0.78434 �0.001378 �0.0060576 0.05020

0 0.81556 0.0057364 �0.006131 0.03284
0.05 0.84103 0.0096949 �0.0060216 0.02383
0.1 0.8626 0.01204 �0.0058406 0.01842
0.2 0.8979 0.01434 �0.0054196 0.01232

Universal functions: Wall derivatives of temperature functions (RK + Newton, this work)
K h00ðK;0Þ h01ðK;0Þ h02ðK;0Þ h03ðK;0Þ

�0.15 0.6833 �0.055829 �0.0027937 0.28398
�0.1 0.74363 0.015904 0.0054618 0.09337
0.05 0.78434 0.001381 �0.0060568 0.050202
0 0.8155 0.0057364 �0.006131 0.032843

0.05 0.84103 0.0096948 0.0060215 0.023843
0.1 0.8626 0.01204 �0.0058406 0.018417
0.2 0.8979 0.01434 �0.0054196 0.012316

Table 3
Comparison of results between [2], FEM analysis in [26], and present analysis using RK + Newton for wall derivatives of velocity functions.

Universal functions: Wall derivatives of velocity functions [2]
K f 000ðK;0Þ f 001ðK;0Þ f 002ðK;0Þ f 003ðK;0Þ

�0.15 0.2163614060 �3.47914250 0.053071271 �0.51628
�0.1 0.3192697599 �0.222593940 0.032254361 �0.18908
�0.05 0.4003225954 �0.166581500 0.023117684 �0.10318

0 0.4695999884 �0.133283260 0.017790554 �0.065937
0.05 0.5311296305 �0.110813940 0.014266708 �0.045895
0.1 0.5870352192 �0.094506819 0.011760066 �0.033722
0.2 0.6867081810 �0.072319116 0.008446235 �0.020184

Universal functions: Wall derivatives of velocity functions [26]
K f 000ðK;0Þ f 001ðK;0Þ f 002ðK;0Þ f 003ðK;0Þ

�0.15 0.21636 �0.34791 0.053071 �0.51633
�0.1 0.31927 �0.22259 0.032254 �0.18908
�0.05 0.40032 �0.16658 0.023117 �0.094945

0 0.4696 �0.13328 0.017791 �0.065936
0.05 0.53113 �0.11081 0.014267 �0.045895
0.1 0.58704 �0.094507 0.01176 �0.033722
0.2 0.68671 �0.072319 0.0084462 �0.020184

Universal functions: Wall derivatives of velocity functions (RK + Newton, this work)
K f 000ðK;0Þ f 001ðK;0Þ f 002ðK;0Þ f 003ðK;0Þ

�0.15 0.21636 �0.34791 0.053071 �0.51633
�0.1 0.31927 �0.22259 0.032254 �0.18908
�0.05 0.40032 �0.16658 0.023118 �0.10318

0 0.4696 �0.13328 0.017791 �0.065937
0.05 0.53113 �0.11081 0.014267 �0.045895
0.1 0.58704 �0.094507 0.01176 �0.033722
0.2 0.68671 �0.072319 0.0084462 �0.020184
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4. Conclusions

In this research we have assessed the performance of two
numerical methods – the finite element method (FEM) and the
Runge–Kutta with Newton–Raphson shooting method (RK + New-
ton) – for solving a set of nonsimilar boundary layer derived ordi-
nary differential equations. While it is shown that the RK + Newton
method has commonly been employed by researchers for the type
of equations considered here, it has been made manifestly evident
11
that for larger values of the step size FEM provides better accuracy
than the RK + Newton method, albeit at the expense of more com-
putational power.

The broader practical implication of the findings here is that
they offer guidance on what numerical techniques may be appro-
priate for particular problems. The reader and the student may ref-
erence this work as a tool for numerically solving differential
equations of various characters. The industrial implications can
also not be overlooked, as practical industries seek fast approaches



Table 5
Comparison of results of both computation and CPU times for the FEM and RK + Newton methods: dg ¼ 10�3;K ¼ �0:15; Pr ¼ 0:7.

Functions Element size Computation time FEM (s) Computation time RK + Newton (s) CPU time FEM (s) CPU time RK + Newton (s)

f 0ðK;gÞ 10�3 1.213757e+02 6.170360e�02 8.295313e+01 9.375000e�02

f 1ðK;gÞ 10�3 5.200374e+02 1.530066e�01 3.428769e+04 8.400128e+04

f 2ðK;gÞ 10�3 7.212769e+02 1.843316e�01 1.866031e+03 6.406250e�01

f 3ðK;gÞ 10�3 5.827214e+01 4.064530e�02 3.446670e+04 8.400138e+04

h0ðK;gÞ 10�3 1.769856e+02 1.391869e�01 7.100156e+02 2.812500e�01

h1ðK;gÞ 10�3 1.998279e+02 9.785790e�02 5.804692e+04 8.400280e+04

h2ðK;gÞ 10�3 1.992414e+02 6.832040e�02 1.507781e+03 5.000000e�01

h3ðK;gÞ 10�3 3.985892e+01 3.623540e�02 5.820639e+04 8.400291e+04

Table 6
Comparison of results of both computation and CPU times for the FEM and RK + Newton methods: dg ¼ 10�4;K ¼ �0:15; Pr ¼ 0:7.

Functions Element size Computation time FEM (s) Computation time RK + Newton (s) CPU time FEM (s) CPU time RK + Newton (s)

f 0ðK;gÞ 10�4 2.483484e+02 2.632862e�01 1.982344e+02 4.062500e�01

f 1ðK;gÞ 10�4 1.649585e+03 9.325260e�01 4.168198e+04 8.403544e+04

f 2ðK;gÞ 10�4 2.268270e+03 1.042285e+00 9.988266e+03 1.750000e+00

f 3ðK;gÞ 10�4 1.363120e+02 1.325625e�01 4.221048e+04 8.403572e+04

h0ðK;gÞ 10�4 4.953056e+02 8.997848e�01 1.882797e+03 1.015625e+00

h1ðK;gÞ 10�4 6.810405e+02 5.226423e�01 7.749628e+04 8.403914e+04

h2ðK;gÞ 10�4 9.931706e+02 3.156395e�01 5.604484e+03 1.578125e+00

h3ðK;gÞ 10�4 2.081671e+02 1.0018998e�01 7.827941e+04 8.403934e+04
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to solve problems and deliver improved products to market.
Advancing the numerical literature using boundary layer problems
as case studies continues to be a necessary undertaking toward the
development and improvement of numerical methods.

Though the numerical results of the boundary layer parameters
(velocity functions, temperature functions, and heat transfer) all
show good agreement, using both numerical methods, the FEM
method is demonstrated to be much more accurate. Future oppor-
tunities may exist to develop or adapt other numerical techniques
(and compare their performances) for solving the MCF-type equa-
tions (or equations in which some of the boundary conditions are
given at infinity). Specifically, future efforts in numerical mathe-
matics may investigate the use of the power series expansion
method (to obtain analytical formulas) together with the Runge–
Kutta method.
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