FUELS AND CHEMICALS FROM THE PYROLYSIS OF SCRAP TYRE: OPTIMISATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK

By

AZETA, OSARHIEMHEN (17PCF01692) BSc. Chemical Engineering, University of Lagos, Akoka, Lagos.

BEING A DISSERTATION SUBMITTED IN THE DEPARTMENT OF CHEMICAL ENGINEERING TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING, (M.ENG.) IN CHEMICAL ENGINEERING OF COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

The dissertation titled "FUELS AND CHEMICALS FROM THE PYROLYSIS OF SCRAP TYRE: OPTIMISATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK" is hereby accepted as an original work carried out by AZETA, OSARHIEMHEN (17PCF01692) in partial fulfilment of the requirements for the award of the degree of Master of Engineering, (M.Eng.) in the Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria.

Mr. John A. Philip Secretary, School of Postgraduate Studies

Signature and Date

Prof. Akan B. Williams Dean, School of Postgraduate Studies

Signature and Date

DECLARATION

I, AZETA, OSARHIEMHEN (17PCF01692) do declare that this dissertation titled "FUELS AND CHEMICALS FROM THE PYROLYSIS OF SCRAP TYRE: OPTIMISATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK" was carried out by me under the supervision of Dr. Augustine O. Ayeni and that the works presented in it are mine and were generated as a result of an original research work carried out by me while in candidature for the degree of Master of Engineering (M.Eng.), in Chemical Engineering here at Covenant University.

AZETA, OSARHIEMHEN

CERTIFICATION

We certify that the dissertation titled "FUELS AND CHEMICALS FROM THE PYROLYSIS OF SCRAP TYRE: OPTIMISATION USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORK" is an original work carried out by AZETA, OSARHIEMHEN (17PCF01692) in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. Augustine O. Ayeni. We have examined and found the work acceptable for the award of a degree of Master of Engineering in Chemical Engineering.

Dr. Augustine O. Ayeni Supervisor

Prof. Vincent Efeovbokhan Head of Department

Prof. Oladipupo O. Ogunleye External Examiner

Prof. Akan B. Williams Dean, School of Postgraduate Studies Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This project is dedicated to God Almighty for His strength and knowledge bestowed upon me towards the completion of this project.

This is also dedicated to my parents, Mr and Mrs Edward Azeta, for their continual support during the course of my postgraduate programme. Without any iota of doubt, the accomplishment of this degree was achievable through them.

ACKNOWLEDGEMENTS

I give all the glory to God for his grace, wisdom and protection throughout the course of my programme.

I thank the Chancellor of Covenant University, Bishop David O. Oyedepo. My appreciation goes to the Vice-Chancellor, Prof. Abiodun H. Adebayo, and the entire management and staff of this prestigious University for providing a conducive environment for the successful completion of my research work. I appreciate the Dean, College of Engineering, Prof. David O. Omole for his leadership role during the completion of my Master's Degree Programme. In addition, I would like to thank the entire Directorate of the Covenant University Centre for Research, Innovation and Discovery (CUCRID) for granting me the needed financial support required for the publication output of this project.

To the Dean of the School of Postgraduate Studies (SPS), Prof. Akan B. Williams and the entire staff of the Postgraduate School, I appreciate you all for the numerous programmes and trainings organised towards capacity building for effective postgraduate research.

I appreciate the encouragement and support accorded me by the Head of Department, Chemical Engineering, Prof. Vincent Efeovbokhan. My profound gratitude goes to my supervisor, Dr. Augustine O. Ayeni for his unparalleled contributions, mentorship and guidance towards the timely completion of my work. I sincerely appreciate the assistance and guidance of the PG coordinator of the Department of Chemical Engineering, Dr. (Mrs) Olayemi Odunlami. Special appreciation to Dr. Oladokun Olagoke for his assistance with MATLAB, Dr. Francis Elehinafe for his assistance with the gas analysis and Dr. Ayodeji Ayoola and Dr. (Mrs) Oluranti Agboola for their words of encouragements.

I would like to express my appreciation for the contributions and assistance to members of faculty of the Department of Chemical Engineering. I would also like to thank Joshua O. Ighalo and Damilola V. Onifade for their assistances in the analysis of my results and data.

My utmost gratitude to my parents, Mr and Mrs Edward Azeta, for their immense supports, provisions and encouragements throughout the duration of this work. Also, to my siblings who were my backbone, I say a big thank you.

Finally, I would like to thank my friends and fellow course mates for their commitment, support and inspiration towards a successful completion of this project.

v

TABLE OF CONTENTS

CONTENT	PAGE
ACCEPTANCE	i
DECLARATION	ii
CERTIFICATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF PLATES	xiii
LIST OF ABBREVIATIONS	xiv
ABSTRACT	xvi
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	5
1.3 Aim and Objectives of the Study	5
1.4 Significance of the Study	6
1.5 Scope and Limitation of the Study	6
1.6 Structure of the Dissertation	7
CHAPTER TWO: LITERATURE REVIEW	9
2.1 Production Process of Tyre	9
2.2 Characteristics of Waste Tyres	10
2.2.1 Proximate analysis	11
2.2.2 Ultimate analysis	12
2.3 Waste Tyre Disposal Challenges	12
2.4 Waste Tyre Management and Recycling	13
2.4.1 Landfilling	14
2.4.2 Retreading	14

2.4.3	3 Material recovery	14
2.4.4	4 Energy recovery	14
2.5	Overview of Pyrolysis	15
2.5.	1 Pyrolysis of waste tyres	16
2.5.2	2 Operating parameters of waste tyre pyrolysis	19
2.5.3	3 Waste tyre pyrolysis technology	25
2.5.4	4 Waste tyre pyrolysis products	31
2.5.	5 Influence of cold water on condenser during pyrolysis process	36
2.5.0	6 Benefits and limitation of tyre pyrolysis	38
2.6	Overview of Zinc Chloride	39
2.6.	1 Structure of zinc chloride	39
2.6.2	2 Formation and occurrence of zinc chloride	39
2.6.2	3 Physical and chemical properties of zinc chloride	40
2.6.4	4 Uses of zinc chloride	40
2.6.5	5 Effects of zinc chloride	41
2.7	Optimisation of Tyre Pyrolysis	42
2.8	Design of Experiments (DOE)	45
2.8.	1 Design with Minitab statistical software	45
2.8.2	2 Response surface methodology	45
2.8.3	3 Box-Behnken design (BBD)	46
2.8.4	4 Artificial neural network (ANN)	46
CHAPTE	ER THREE: MATERIALS AND METHODS	50
3.1	Collection and Preparation of Scrap Tyres	50
3.2	Equipment/Apparatus	51
3.2.7	1 Description of the pyrolyser	52
3.3	Procedures	52
3.3.	1 Sieve analysis	52

3.	3.2	Proximate analysis of waste tyre	53
3.4	Ex	perimental Operation	55
3.4	4.1	Experimental set-up	55
3.4	4.2	Design of experiment with RSM	58
3.4	4.3	Experimental modelling with artificial neural network (ANN)	60
3.5	Py	rolysis Experimental Procedure	61
3.6	De	termination of Percentage Yield of Products	62
3.7	Ph	ysical Characterisation of the Pyrolytic Oil	63
CHAP	TER	FOUR: RESULTS AND DISCUSSION	64
4.1	Pro	oximate Analysis of Scrap Tyre	64
4.2	Re	sponse Surface Methodology Analysis	65
4.3	Sta	tistical Evaluation of the Regression Models	66
4.4	Re	sponse Surface Plots for the Determination and Effects of Optimised Parameters	69
4.4	4.1	Effect of operating parameters on oil yield	70
4.4	4.2	Effect of operating parameters on char yield	73
4.5	Re	sponse Surface Optimisation of Pyrolysis Parameters	75
4.6	Op	timisation Data	77
4.7	Py	rolysis Products Analysis	78
4.8	Ef	fect of Catalyst on Product Yields	80
4.9	Ar	tificial Neural Network Analysis	80
4.10	(Characterisation of Product Yields	84
4.	10.1	Physiochemical properties of pyrolytic oil	84
4.	10.2	Gas Chromatography-Mass Spectrometry (GC-MS) analysis of oil fraction	88
4.	10.3	Fourier Transform Infrared Spectroscopy (FTIR) analyses	94
4.11	(Characterisation of Produced Char	96
4.	11.1	Physical properties of the char	96
4.	11.2	SEM-EDX analyses	97

4	4.11.3	XRF analyses1	00
2	4.11.4	XRD analyses 1	00
2	4.11.5	BET analyses 1	02
CHA	PTER I	FIVE: CONCLUSION AND RECOMMENDATION 1	04
5.1	Cor	nclusion1	04
5.2	e Rec	commendation1	05
5.3	Cor	ntributions to Knowledge1	06
REFE	ERENC	YES 1	07

LIST OF TABLES

TABLE	PAGE
2.1 : Composition of a sample tyre	10
2.2: Proximate analysis data of waste tyre	11
2.3: Ultimate analysis of waste tyre	12
2.4: Operating parameters of WT pyrolysis	20
2.5: Physical properties of TPO	35
2.6: Optimisation of tyre pyrolysis oil	43
3.1: Multi-variant factors and levels for experimental design.	59
3.2: Multi-variant order of experimental design	59
4.1: Proximate analysis result of raw automobile scrap tyre sample	64
4.2: Multiple correlation coefficients data for models	67
4.3: ANOVA for the polynomial models obtained from experimental design.	68
4.4: Optimised and validated values for the pyrolysis of the scrap tyre	75
4.5: Gas emission concentrations from the pyrolysis experiment	79
4.6: Training parameters of proposed ANN model	81
4.7: Physicochemical properties of TPO	85
4.8: Peak identification for gas chromatograms of TPO	89
4.9: Peak identification for FTIR spectra of pyrolytic oil	94

LIST OF FIGURES

FIGURE	PAGE
2.1: Transversal cut of a radial tyre.	10
2.2: WT pyrolysis process.	16
2.3: Experimental set-up for flash pyrolysis of WTs.	18
2.4: A diagrammatic representation of pyrolysis reactor	24
2.5: Different fast pyrolysis reactors applied in waste tyre pyrolysis	26
2.6: Fixed bed reactor	27
2.7: Schematic diagram of bubbling fluidized bed reactor	28
2.8: Scheme of the conical spouted bed bench scale plant	31
2.9: Schematic diagram of generation of activated carbon from carbon black	33
2.10: Recovery of limonene from TPO	34
2.11: Pyrolysis process pathway	37
2.12: Schematic diagram of tube-and-shell heat exchanger type condensation	37
2.13: Schematic diagram of the water quenching condenser	38
2.14: Neural network training process	48
3.1: Summary of experimental design steps	61
3.2: Schematic diagram of material balance	62
4.1: Product yields obtained from experimental results	65
4.2: Response surface plot of the effects of temperature and particle size on oil yield	71
4.4: Response surface plot of the effects of time and particle size on oil yield	73
4.5: Response surface plot of the effects of temperature and particle size on char yield	73
4.6: Response surface plot of the effects of time and temperature on char yield	74
4.7: Response surface plot of the effects of time and particle size on char yield	74
4.9: Effects of various methods on product yields	77
4.11: ANN output of pyrolytic oil yield vs. target	82
4.12: ANN output of pyrolytic char yield vs. target	83

4.13: ANN output of pyrolytic gas yield vs. target	84
4.14: Gas chromatograms of TPO samples A and B	91
4.15: Gas chromatograms of TPO samples C, D and E	92
4.16: Hydrocarbon distribution in OTP oil	93
4.17: Hydrocarbon distribution in OCP oil	93
4.18: FTIR spectra of TPO	96
4.19: Plot of moisture content and HHV for pyrolysis char samples	97
4.20: SEM Micrographs of raw tyre (A1), OTP char (B1) and OCP char (C1)	98
4.21: EDX elemental composition of raw tyre, OTP char and OCP char	99
4.22: XRF elemental composition of raw tyre, OTP char and OCP char	100
4.23: XRD analysis for raw tyre	101
4.24: XRD analysis for OTP char	101
4.25: XRD analysis for OCP char	102
4.26: BET graphical analysis of the results for raw tyre, OTP char and OCP char	103

LIST OF PLATES

PLATE P	AGE
3.1: Raw scrap tyre samples	50
3.2: Shredded scrap tyre samples	51
3.3: Pyrolyser components (a) Stainless steel reactor (b) Condenser	52
3.4: Sieve analysis	53
3.5: Pictorial representation of the experimental set-up	57
3.6: (a) Purging process of the reaction (b) Electric furnace (c) Temperature controller	58
4.1: Samples of pyro-oil produced experimentally	70
4.2: Samples of char from the experimental pyrolysis process	70
4.3: Produced pyro-oil and char under optimised conditions of varying parameters for therma	al and
catalytic pyrolysis.	77

LIST OF ABBREVIATIONS

WT	Waste Tyre
FC	Fixed Carbon
MSW	Municipal Solid Waste
VOC	Volatile Organic Compounds
NR	Natural Rubber
PBR	Polybutadiene Rubber
SBR	Styrene-Butadiene Rubber
BR	Butadiene Rubber
FFA	Free Fatty Acid
DOE	Design of Experiment
RSM	Response Surface Methodology
BBD	Box-Behnken Design
TPO	Tyre Pyrolytic Oil
OTP	Optimised Thermal Pyrolysis
OCP	Optimised Catalytic Pyrolysis
ANN	Artificial Neural Network
GC-MS	Gas Chromatography-Mass Spectrometry
FTIR	Fourier Transform Infrared Spectroscopy
BET	Brunauer-Emmet Teller
SEM-EDX	Scanning Electron Microscopy - Energy Dispersive X-Ray
XRF	X-Ray Fluorescence
XRD	X-Ray Diffraction
ppm	Part per Million
LEL	Lower Explosive Limit
DF	Degree of Freedom
Adj SS	Adjusted Sum of Squares

Adj MS	Adjusted Mean Squares
ANOVA	Analysis of Variance
P-Value	Probability Value
F-Value	Fisher's Variance
MSE	Mean Square Error

PAH Polycyclic Aromatic Hydrocarbon

ABSTRACT

Scrap tyres generated are indiscriminately disposed without consideration for their impacts on human health and the environment. Their non-biodegradable materials constitute a major challenge in the environment. High volatile matter and fixed carbon content make their disposal a cumbersome task. Pyrolysis of automobile scrap tyres was investigated in this study while paying attention to variation and optimisation of the process parameters for the best product yields. Response surface methodology (RSM) was adopted for the optimisation of process variables and development of a statistical model after initial determination of the experimental design runs based on the Box-Behnken design (BBD) approach. Artificial neural network (ANN) modelling was used to predict the accuracy of models obtained from the RSM. Process parameters; residence time (40, 50 and 60 min), temperature (450, 500, 550 °C) and particle size (6.3 mm, 9.4 mm, 12.5 mm) were used for the experimental design. The optimised conditions were validated via thermal pyrolysis and a variation using catalytic pyrolysis with zinc chloride as the catalyst. A fixed bed reactor was utilised for this purpose with a water reservoir connected to the condenser for efficient cooling. The impact of emitted gases on the operator and the surrounding, effect of pyrolysis time, temperature and feed particle size on the pyro-oil produced were assessed as well as the characterisation of the pyro-oil and char. An ANN model based on feed-forward learning algorithm was trained, validated and tested using experimental data points obtained from the RSM in the ratio 70:15:15 respectively to give regression coefficients (R) values for the product yields. The resultant yields of 31.89 wt.% and 37.10 wt.% were obtained for the thermal and catalytic pyrolysis at optimised conditions of pyro-oil respectively at operating time, 60 min, temperature of 503 °C and feed particle size of 6.3 mm at a heating rate of 7 °C/min. The RSM and ANN techniques were proven to be effective tools in the generation of models for the optimisation of pyro-oil yield and can serve as an alternative for laboratory study having R^2 values with high degrees of accuracy of RSM (0.9985) and ANN (1.000). Also, the model equations derived from RSM were statistically significant having P-value < 0.05, large F-value (735.76) and optimal composite desirability factor of 0.9793. Fuel properties of the derived pyro-oil were analysed and found to be suitable for use as liquid fuel based on minimal sulphur content of 0.07 - 0.22 %, excellent viscosity (2.93 - 3.36 cSt), density $(0.889 - 0.918 \text{ g/cm}^3)$ and higher heating values of 35.40 - 44.24 MJ/kg. A detailed characterisation of the pyro-oil was performed using FTIR, and GC-MS while BET, SEM-EDX, XRF and XRD were performed on the char. Based on the analyses carried out, it can be said that the pyro-oil being a complex mixture of organic compounds can serve as feedstock for industrial processes. Also, the properties based on the physiochemical properties encourage the use of this oil and char as conventional fuels, fillers and pigments.

Keywords: Pyrolysis, Automobile Scrap tyre, Pyrolytic oil, Char, Response surface methodology, Artificial neural network