BLACK FACE-BASED AGE ESTIMATION SYSTEM USING GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORK

OLADIPO OLUWASEGUN (15PCG01032)

JUNE, 2022

BLACK FACE-BASED AGE ESTIMATION SYSTEM USING GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORK

BY

OLADIPO OLUWASEGUN

(15PCG01032)

B.Tech Computer Engineering, LAUTECH, Ogbomoso

M.Tech Computer Science, LAUTECH, Ogbomoso

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN COMPUTER SCIENCE IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

JUNE, 2022

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Mr. Taiwo B. Erewunmi

(Secretary, School of Postgraduate Studies)

.....

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

.....

Signature and Date

DECLARATION

I, OLADIPO OLUWASEGUN (15PCG01032), declare that this research work was carried out by me under the supervision of Prof. Elijah O. Omidiora of the Department of Computer Science and Engineering, Ladoke Akintola University of Technology, Ogbomoso and Prof. Victor C. Osamor of the Department of Computer and Information Sciences, Covenant University, Ota, Nigeria. I attest that this thesis has not been presented either wholly or partly for the award of any degree elsewhere. All the sources of data and scholarly information used in this thesis are duly acknowledged.

OLADIPO, OLUWASEGUN

uter

27/06/2022

Signature & Date

CERTIFICATION

We certify that the thesis titled, "Black Face-Based Age Estimation System Using Genetic Algorithm-Artificial Neural Network." is an original research work carried out by OLADIPO, OLUWASEGUN (15PCG01032) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Elijah O. Omidiora and Prof. Victor C. Osamor. We have examined and found this work acceptable as part of the requirement for the award of a degree of Doctor of Philosophy in Computer Science.

Prof. Elijah O. Omidiora

(Supervisor)

Prof. Victor C. Osamor

(Co-Supervisor)

Prof. Benjamin K. Aribisala

(External Examiner)

Prof. Olufunke O. Oladipupo

(Head of Department)

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Admidion

Signature and Date

DEDICATION

This thesis is dedicated to my late mother, Mrs. Elizabeth Usen Oladipo, who inspired the pursuit of purpose. I also appreciate my dad, Mr. Oladipo James. Thank you for being a pillar of support, morally and financially.

ACKNOWLEDGEMENTS

Above all, I want to acknowledge the Almighty God, my Provider, my Shield, and Buckler, in whom I have my being; a Very Present Help in Times of Trouble, who made this Ph.D. a reality. Despite everything, God came through for me. His name I will forever praise.

I want to express my undying gratitude to Dr. David O. Oyedepo, presiding Bishop of Living Faith Church Worldwide and Chancellor of Covenant University. You, sir, are a gift to our generation. My profound gratitude goes to Prof. Abiodun H. Adebayo, Vice-Chancellor; Mr. Emmanuel K. Igban, Ag Registrar; Prof. Akan B. Williams, Dean, School of Postgraduate Studies; Dr. Emmanuel O. Amoo, Sub-Dean, School of Postgraduate Studies; and Prof. Timothy A. Enake, Dean, College of Science and Technology, for their leadership roles and support in this great citadel of learning.

I wish to appreciate the effort of my supervisors, Prof. Elijah O. Omidiora and Prof. Victor C. Osamor, for their patience, encouragement, and efforts throughout this Ph.D programme. I appreciate the head of the Department, Prof. Olufunke O. Oladipupo you have been a mother. My special regard goes to my colleagues and all the faculty members of the department and the college of science and technology. Thank you for standing by and through.

I would like to thank Dr. Oyeranmi Adigun, Director of the Center for Information Technology and Management at Yaba College of Technology. He's what I call a propeller. He always made sure I gave my best to everything I did. I'd like to express my gratitude to Dr. Henry, the college's ICT consultant, who was always an inspiration to me. I am also aware of the unwavering strength possessed by all members of the software department dedicated to the completion of this program. You guys are absolute. Ayandola Aremu, Basiru Shuaib, Isaiah Agev, Olumide Akomolafe, and Evangel Irenonse.

My deep-seated gratitude goes to my wife and children, Oladipo Oluwatosin, Oladipo Tijesunimi, and Oladipo Anjolaoluwa. You all are the impetus, soother, and the nurturer. I cannot underemphasize the significance of your role in the course of the completion of this

program. I am thankful to my siblings Oladipo Toluwani, Oladipo Oluwaseun, and Oladipo Bunmi for their constant prayers towards the success of this task.

I cannot forget the likes of Ojewale Olaniyi, who is a brother in times of need, Ogunleye Oladayo, Awoyemi Olanrewaju, Bisola Oke, Oyemade Mobolaji, Jumoke Rasaq, Popoola Oluwaseun, Olatunji Olanrewaji, and Oni Oluwaseyi who have made going through this program possible, people who sacrificed time and handed their support in kind.

Finally, I am tremendously grateful to my spiritual Fathers Pastor Blessing Aruya, Dr. Abayomi Ojo, Dr and Dr (Mrs) Ogundoyin and a host of other spiritual mentors God bless you.

TABLE OF CONTENTS

Con	Content		Pages
TITI ACC DEC CER DED ACK TAB LIST LIST	COVER PAGE TITLE PAGE ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT		
CHA	APTER	ONE: INTRODUCTION	
1.1	Backg	ground to the Study	1
1.2	Stater	nent of the Problem	4
1.3	Aim a	and Objectives	6
1.4	Scope	e of the Study	7
1.5	Justifi	ication of the Study	7
CHA	APTER 7	TWO: LITERATURE REVIEW	
2.1	Age E	Estimation	10
2.2	Patter	n Recognition	12
	2.2.1	Applications of Pattern Recognition	15
2.3	Face I	Recognition	16
2.4	Existi	ng Face Recognition Techniques	17
	2.4.1	Principal Component Analysis (Eigenface)	18
	2.4.2	Independent Component Analysis (ICA)	20
	2.4.3	Linear Discriminant Analysis (LDA)	21
	2.4.4	Elastic Bunch Graph Matching (EBGM)	22
2.5	Age E	Estimation Pipeline and Architecture	23
2.6	Face-	Age Modeling	24
	2.6.1	Anthropometric Model (AM)	25
	2.6.2	The Active Appearance Model (AAM)	26

	2.6.3 Aging Pattern Subspace (AGES)	27
	2.6.4 Age Manifold Model (AMM)	30
	2.6.5 Appearance Feature Model (AFM)	30
2.7	Comparative Difference between Face-Age Models	30
	2.7.1 Anthropometric Model Vs AAM	31
	2.7.2 AGES Vs Age Manifold	31
2.8	Weaknesses of Different Aging-face Models	32
2.9	Age Estimation and Face Recognition	33
2.10	Image Preprocessing	33
	2.10.1 Grayscale	34
	2.10.2 Histogram Equalization	37
2.11	Feature Extraction and Selection	38
	2.11.1 Local Binary Pattern (LBP)	39
	2.11.2 Gabor Wavelet	40
2.12	Existing Face Databases	42
2.13	Machine Learning Algorithms	44
	2.13.1 Artificial Neural Networks (ANNs)	45
	2.13.2 Genetic Algorithm	53
2.14	Hybrid Networks	61
2.15	Review of Related Works	62
2.16	Research Gap	70
CHA	PTER THREE: METHODOLOGY	
3.1	Research Approach	71
3.2	Research Philosophy	72
3.3	Problem Formulation	74
3.4	Simulation Tool	75
3.5	System Framework	75
3.6	Image Acquisition	76
3.7	Image Pre-processing and Normalization	78
3.8	Feature Extraction	79
	3.8.1 Local Binary Pattern (LBP)	79

	3.8.2	Gabor Wavelet (GW)	80
3.9	Featur	re Selection	81
3.10	Classi	fication using GA-ANN	82
	3.10.1	GA-ANN Testing Phase	90
3.11	Perfor	mance Evaluation	93
CHA	PTER I	FOUR: RESULTS	
4.1	Devel	opment of Black Face Database	95
4.2	Featur	re Extraction	95
4.3	The G	enetic Algorithm-Artificial Neural Network (GA-ANN)	100
4.4	Perfor	mance Evaluation	101
	4.4.1	Age Range Correct Classification Rate for LBGANN and LBANN	103
	4.4.2	Correct Classification Rate for GGANN and GANN	105
	4.4.3	LBGANN and LBANN Recognition Time Results	105
	4.4.4	GGANN and GANN Recognition Time Results	105
	4.4.5	Training Time Result	110
	4.4.6	Simulation Results for System Trained with limited black faces	110
	4.4.7	CCR of GGANN-220 and GGANN-855	111
	4.4.8	Effect of Genetic Algorithm (GA) Parameters on the Performance of	
		LBGANN and GGANN	113
		4.4.8.1 LBGANN and GGANN CCR with Change in Population Size	
		and Number of Generations	114
		4.4.8.2 LBGANN and GGANN CCR with Change in Mp and Cp	114
		4.4.8.3 LBGANN and GGANN Training Time (TT) with Change	
		in Population and Number of Generations	115
		4.4.8.4 LBGANN and GGANN Training Time with Change in	
		Mp and Cp	115
	4.4.9	Developed AESs CCR/TT and Existing System CCR/TT Summary	116
4.5	Result	t Validation	117

CHAPTER FIVE: DISCUSSION

5.1	Perfor	mance Evaluation Details	122	
	5.1.1	LBGANN and LBANN Correct Classification Rate at different		
		Age Groups	122	
	5.1.2.	Correct Classification Rate at Different Age Groups for GGANN and		
		GANN AES	124	
5.2	Perfor	mance Evaluation using Correct Classification Rate for Different Age		
	Group	s using Limited Black Face Database	127	
5.3	Perfor	mance Evaluation for Recognition Time Results	130	
5.4	Perfor	mance Evaluation for Training Time Results	133	
5.5	Perfor	mance Evaluation for the Effect of Change in GA Parameters	134	
5.6	Comp	arison with Existing Techniques	137	
5.7	Statistical Analysis using One Way Analysis of Variance			
	(One-way ANOVA)			
	5.7.1	Statistical Analysis of Table 4.4	137	
	5.7.2	Statistical Analysis of Table 4.7	138	
	5.7.3	Statistical Analysis for the CCR of LBGANN-220 and		
		LBGANN-855	139	
	5.7.4	Statistical Analysis for the CCR of GGANN-220 and GANN-855	140	
	5.7.5	Statistical Analysis for the Recognition Time	141	
СНА	PTER S	SIX: CONCLUSION AND RECOMMENDATIONS		
6.1	Summ	ary	143	
6.2	Concl	usion	144	
6.3	Contri	butions to Knowledge	147	
6.4	Recon	nmendations	147	
6.5	Limitation of Study 14		148	

REFERENCES

LIST OF PUBLICATIONS	168
APPENDIX A: Program (1) listing	169
APPENDIX B: Program (2) listing	178
APPENDIX C: Form listing	208

149

LIST OF TABLES

Tables	Title of Tables	Pages
2.1:	List of face databases	44
2.2:	Researches, techniques, face databases and results obtained from	m previous
	face-based age estimation researches	67
3.1:	Database age distribution	78
3.2:	GA-ANN model configuration	83
4.1:	Composition of test images across various age groups	103
4.2:	Correct classification rate for LBGANN system	104
4.3:	Correct classification rate for LBANN system	104
4.4:	Correct classification rate for LBGANN and LBANN	105
4.5:	Correct Classification Rate for GGANN	106
4.6:	Correct Classification Rate for GANN	106
4.7:	Correct Classification Rate for GGANN and GANN	107
4.8:	Average Recognition Time for LBGANN	107
4.9:	Average Recognition Time for LBANN	108
4.10:	Average Recognition Time for LBGANN and LBANN	108
4.11:	Average Recognition Time GGANN	109
4.12:	Average Recognition Time for GANN	109
4.13:	Average Recognition Time for GGANN and GANN	110
4.14:	Correct Classification Rate for LBGANN-220	111
4.15:	Correct Classification Rate for LBGANN-220 AES and LBGAN	NN-855 112
4.16:	Correct Classification Rate for GGANN-220	112
4.17:	Correct Classification Rate for GGANN-220 and GGANN-855	113
4.18:	Developed AES CCR with change in Ngen and Ps at Cp=0.5 and	Mp = 0.1
		114
4.19:	Developed AESs' CCR with change in Cp and Mp at Ps=100 and	1 Ngen = 10
		115
4.20:	Developed AES TT with change in Ngen and Ps at Cp=0.5 an	d Mp = 0.1
		116

4.21:	Developed AES TT with change in Cp and Mp at Ngen =10 and Ps =	100
		116
4.22:	Correct Classification Rate Summary for developed AES benchman	rked
	against the developed database and existing system	117
4.23:	Training Time Summary for developed AES and existing system	117
4.24:	Mobile app. Age estimation results	119
4.25:	Sensitivity test results for LBGANN and GGANN	121
5.1:	Aggregate correct classification rate of LBGANN, LBANN, GGANN	and
	GANN across age groups using 170 test faces	127
5.2:	LBGANN and GGANN correctly classified images and difference	with
	simulation using the developed database	129
5.3:	Average recognition time for LBGANN and GGANN	132
5.4:	Training time for LBGANN, GGANN, LBANN and GANN	133
5.5:	Performance comparison of developed system with existing systems	137

LIST OF FIGURES

Figures	Title of Figures	Pages
2.1:	Craniofacial changes during the first phase of aging	11
2.2:	Skin and facial hair during the first stage of aging	11
2.3:	Change in face texture observable in the second stage of face aging	12
2.4:	Block diagram representing Age estimation pipeline	24
2.5:	Ratios on human face image	28
2.6:	Aging Pattern	29
2.7:	Sample grayscale conversion for colored image	37
2.8:	LBP operation	40
2.9:	Sample face image subjected to Gabor Wavelet Transformatio	n (A)
	Transformation real part and (B) Magnitude of transformation	42
2.10:	Simple Neural Network	49
2.11.	Simple Flowchart for steady state genetic algorithm	56
2.12:	Single-point crossover of two binary string chromosomes	59
2.13:	Mutation of binary string chromosomes	60
3.1:	GA-ANN framework.	76
3.2:	UML sequence diagram of the face image collection mobile app	77
3.3:	UML deployment diagram for face collection module	77
3.4:	Flow chat for the pre-processing stage	79
3.5:	Single point cross over implemented in the new system	83
3.6a:	GA-ANN Training flowchart part A	85
3.6b:	GA-ANN Training flowchart part B	86
3.7:	ANN model training in GA-ANN module	89
3.8:	GA-ANN Testing stage flowchart	91
3.9:	GA-ANN testing framework	92
3.10:	Model validation mobile application UML sequence diagram	93
4.1a:	Face image database file showing age-labelled black faces	96
4.1b:	Face image database file showing age-labelled black faces	97
4.2 (a):	Feature extraction and reduction module displaying LBP and LBF	P-PCA
	feature size	98

4.2 (b):	LBP Feature subset output on command window	99
4.3 (a):	Gabore Feature subset output on command window	99
4.3(b):	Feature extraction and reduction module displaying LBP and LBP-	PCA
	feature summary on the workspace	100
4.4:	GA-ANN Training for LBP based system	102
4.5:	Mobile application interfaces for the GA-ANN-based age estimation sy	vstem
		118
5.1:	Correct classification rate of LBGANN and LBANN	123
5.2:	Correct classification rate for GGANN and GANN systems	125
5.3:	Aggregate CCR for LBGANN, LBANN, GGANN and GANN	127
5.5:	Graph of LBGANN and LBANN recognition time	130
5.6:	Average recognition time for GGANN and GANN	131
5.7:	Chart of average recognition time of LBGANN side by side GGANN.	132
5.8:	Chart for LBGANN, GGANN, LBANN and GANN systems' training	time
		134
5.9:	Correct classification rate for AESs benchmarked against the devel	oped
	database	136
5.10:	Training time of the AESs when training with 80% of the devel	oped
	database.	136

LIST OF ABBREVIATIONS

2-D :	Two-Dimensional
2DLDA:	Two-Dimensional Linear Discriminant Analysis
2DPCA:	Two-Dimensional Principal Component Analysis
3-D :	Three-Dimensional
AAM:	Active Appearance Model
AES:	Age Estimation System
AFM:	Appearance Feature Model
AGES:	Aging Pattern Subspace
AM:	Anthropometric Model
AMM:	Age Manifold Model
ANN:	Artificial Neural Network
ART:	Average Recognition Time
BIF:	Bio-inspired features
BP:	Back Propagation
BPNN:	Back Propagation Neural Network
CCR:	Correct Classification Rate
CEA:	Conformal Embedding Analysis
Cp:	Cross over probability (Genetic algorithm parameter)
CS:	Cumulative Score
DNA:	Deoxyribonucleic Acid
EBGM:	Elastic Bunch Graph Matching
EEG:	Electroencephalogram
GA:	Genetic Algorithm
GA-ANN:	hybrid of Genetic Algorithm and Artificial Neural Network (Genetic- Artificial Neural Network)

GANN:	Gabor Wavelet Artificial Neural Network-based Age Estimation System
GGANN:	Gabor Wavelet Genetic- Artificial Neural Network-based Age Estimation System
GGANN-220	: Gabor Wavelet Genetic- Artificial Neural Network-based Age Estimation System trained with 220 black faces
GGANN-855	: Gabor Wavelet Genetic- Artificial Neural Network- based Age Estimation System trained with 855 black faces
GW:	Gabor Wavelet
HCI:	Human-Computer Interaction
HOG:	Histograms Oriented Gradients technique
ICA:	Independent Component Analysis
IT:	Information Technology
LARR:	Locally Adjusted Robust Regressor
LBANN:	Local Binary Pattern Artificial Neural Network- based Age Estimation System
LBGANN:	Local Binary Pattern Genetic- Artificial Neural Network- based Age Estimation System
LBGANN-22	0: Local Binary Pattern Genetic- Artificial Neural Network- based Age Estimation System trained with 220 black faces
LBGANN-85	5: Local Binary Pattern Genetic- Artificial Neural Network- based Age Estimation System trained with 855 black faces
LBP:	Local Binary Pattern
LDA:	Linear Discriminant Analysis
MAE:	Mean Absolute Error
MATLAB:	Matrix Laboratory Software
Mp:	Mutation Probability (Genetic algorithm parameter)
MU :	Momentum update
MU_dec:	Momentum update decreasing factor

Ngen:	Number of Generation (Genetic algorithm parameter)
-------	--

- **NN**: Neural Networks
- **OCR**: Optical Character Recognition
- PCA: Principal Component Analysis
- PLS: Partial Least Square Approach
- **Ps:** Population Size (Genetic algorithm parameter)
- PubFig: Public Figures benchmark
- **rKCCA**: Reduced Canonical Correlation Analysis
- **RT**: Recognition Time
- **SOM**: Self-Organizing map
- SURF: Speeded-Up Robust Features
- SVM: Support Vector Machine
- SVR: Support Vector Regression
- **TSP**: Traveling salesman problem
- **TT**: Training Time

ABSTRACT

Age estimation is the determination of a person's age based on its biometric features. Its application can be seen in areas such as forensic analysis. E-Government, security and surveillance. Face biometric being non-intrusive is a preferred biometric for age estimation. Research focus in face-based age estimation system is to increase the number of correctly classified images, reduce the recognition time, and make appropriate choice of feature extraction technique to use, especially in an uncontrolled environment. Some of the computational approaches that have been used for face-based age estimation include machine learning techniques such as support vector machines, neural network and Bioinspired Features (BIF). However, optimization techniques can be integrated into the classification module of age estimation systems to improve the overall performance. The back-propagation algorithm is the most popularly used algorithm for training a multilayer Artificial Neural Network (ANN). It is an efficient technique applied to classification problems, but still suffers drawback with complex problem space, as it has the tendency to converge at a local minimal point. This study is aimed at developing a face-based Age Estimation System (AES) using Genetic Algorithm - Back Propagation Artificial Neural Network (GA-ANN) for improved age estimation. The combination is motivated by the fact that Genetic Algorithm (GA) has the potential to traverse the entire search space while remaining time efficient. Hence, offsetting the aforementioned problem. The study implemented two feature extraction techniques namely Local Binary Pattern (LBP) and Gabor Wavelet (GW) separately, to deduce which is most suitable for black faces. Principal Component Analysis (PCA) was further applied to the feature vector generated for the second level feature extraction in order to remove redundant features. The system was trained and tested with a newly developed database containing 855 black faces taken in an uncontrolled environment using a mobile app and 500 faces from the FG-NET database. The system was trained 80% and tested with 20% of the database. The developed systems LBP GA-ANN (LBGANN) and GW GA-ANN (GGANN) were implemented in MATLAB programming environment. The study showed that the developed GA-ANN based AES (LBGANN and GGANN) performed better than standard back propagation Artificial Neural Network (ANN) based systems (LBANN and GANN) in terms of Correct Classification Rate (CCR) and recognition time, as it showed a correct classification rate of 94.97% and 92.11% respectively as against the standard ANN-based system that had 89.69% and 88.72% respectively. The developed system incurred more training time as it iterates through several GA generations. The study also showed that LBP feature extraction technique is more suitable for faces as it better encodes face texture information and morphological changes during growth than Gabor wavelet.

Keywords: Age estimation, face-based, artificial neural network, genetic algorithm, black face