FUNCTIONAL DIVERSITY OF LACTIC ACID BACTERIA FROM FERMENTED RICE

GEORGE, DANGO ZILPAH (20PCQ02198)

JULY, 2022

FUNCTIONAL DIVERSITY OF LACTIC ACID BACTERIA FROM FERMENTED RICE

BY

GEORGE, DANGO ZILPAH (20PCQ02198) B.Sc Microbiology and Biotechnology, Caleb University, Imota

DISSERTATION SUBMITTED TO **SCHOOL** A THE OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc)** DEGREE IN MICROBIOLOGY IN THE DEPARTMENT OF COLLEGE **BIOLOGICAL** SCIENCES, OF **SCIENCE** AND TECHNOLOGY, COVENANT UNIVERSITY.

JULY, 2022.

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Sciences in Microbiology in the Department of Biological Science, College of Science and Technology, Covenant University, Ota, Nigeria

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, DANGO, GEORGE ZILPAH (20PCQ02198) declare that this research was carried out by me under the supervision of Prof. Obinna C. Nwinyi` of the Department of Biological Science, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

DANGO, GEORGE ZILPAH

Signature and Date

CERTIFICATION

We certify that this dissertation titled **"FUNCTIONAL DIVERSITY OF LACTIC ACID BACTERIA FROM FERMENTED RICE"** is an original research work carried out by **DANGO, GEORGE ZILPAH (20PCQ02198)** in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Obinna C. Nwinyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Microbiology.

Prof Obinna C. Nwinyi (Supervisor)

Prof Solomon U. Oranusi (Head of Department)

Prof. Afolabi O. Rebecca (External Examiner)

Prof. Akan B. William (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work to Almighty God, for His grace, help, and strength throughout my dissertation.

ACKNOWLEDGEMENTS

All thanks and praises be to Almighty God for the perseverance and grace he gave me on my journey. My appreciation goes to the Chancellor Bishop David Oyedepo, the current Vice-Chancellor, Professor Abiodun H. Adebayo, the Acting Registrar, Mr Emmanuel Igban, and the entire management and staff of Covenant University for providing me the facilities for the successful completion of my program.

To the current Dean of the School of Postgraduate Studies, Professor Akan B. Williams, and the postgraduate school staff, I appreciate you for the diverse trainings and programmes organised towards capacity building for successful postgraduate research. And, a very big thank you goes to the Head of the Department of Biological Sciences, Professor Solomon U. Oranusi and the staff for the constant help.

My most profound gratitude and heartfelt appreciation goes to my supervisor, Prof. Obinna C. Nwinyi for his guidance and patience, throughout the course of this research. I am forever grateful to you, Sir.

My sincere appreciation also goes to my parents Mr Gabriel P. & Mrs Rose GP. George and siblings Vera, Rita, Flora, Annie and Mona for the love I was showered with. To my course mate Adebukola may God continue to bless you, to Dr Paul Akinduti, Dr Yemisi Obafemi, Dr Oniha Margaret, and Mr Taiwo thank you for always showing concern to my work, and for every input made to make my work a success, may God bless you all. I want to appreciate all my friends and loved ones whose love, help, input, and support during this time was unwavering. I'm grateful, thank you.

Finally, I say a big thank you to all members of the Department of Biological Sciences for their support.

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE DECLADATION	III iv
CERTIFICATION	IV V
DEDICATION	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xiv
LIST OF TABLES LIST OF ABBREVIATIONS	XV xvii
ABSTRACT	xviii
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the study	1
1.2 Statement of the research problem	2
1.3 Research questions	2
1.4 Aim and objectives	2
1.5 Justification for the study	3
1.6 Scope of the study	3
CHAPTER TWO: LITERATURE REVIEW	4
2.1 Rice	4
2.2 Fermentation	7
2.3 Fermented rice	8
2.4 Rice fermentation	10
2.4.1 Methods applied in rice fermentation	10
2.4.2 Effects of fermentation on nutrients present in rice	10
2.4.3 Microorganisms involved in rice fermentation	12
2.5 Lactic acid bacteria	12
2.6 Importance of rice fermentation	12
2.6.1 Benefits of fermented rice consumption	12
2.6.1.1 Additional nutrients compared to normal rice	13
2.6.1.2 Prevents constipation	13

2.6.1.3 Manages diarrhea	13		
2.6.1.4 Energy	13		
2.6.1.5 Maintenance of animal health			
2.7 Probiotic 14			
2.8 Antimicrobial property of property of probiotic bacteria from fermented rice 15			
2.8.1 LAB as a source of antimicrobial agent	15		
2.9 Health benefits 17			
2.10 LAB bacteriocin	19		
2.10.1 Bacteriocin mode of action	19		
2.11 LAB bacteriocins classification	20		
2.11.1 Classification by cell types	20		
2.11.2 Gram-positive bacteria bacteriocins	21		
2.12 Growth conditions for optimum production of lab bacteriocins	25		
2.13 The activity of LAB and their bacteriocins against foodborne pathogens	25		
2.14 Bacteriocins from Lactic acid bacteria in food bio-preservation	26		
2.14.1 Advantages of using bacteriocin as a food preservative	26		
2.15 Bio-preservation of food by LAB	27		
2.15.1 Bacteriocin application as an antimicrobial and preservative agent in			
food industry	27		
2.16 Role in food preservation: antimicrobial potential of non-starter LAB	28		
2.17 Bacteriocin in food systems and factors influencing its effectiveness	29		
CHAPTER THREE: MATERIALS AND METHODS	32		
3.1 Materials	32		
3.2 Equipment	32		
3.4 Media	32		
3.5 Reagents	32		
3.6 Sample collection	32		
3.7 Fermentation	33		
3.8 Strain isolation and screening	33		
3.9 Physiological identification of lactic acid bacteria 33			
3.10 Gram staining	33		

3.11 Catalase	34	
2 Oxidase test		
13 Triple sugar iron test		
3.14 Determination of haemolytic activity of LAB isolates	34	
3.15 Spore staining	35	
3.16 Molecular characterization of selected isolates	35	
3.17 16s rRNA amplification and sequencing	35	
3.18 Selective screening of antimicrobial compound (AMC) producing LAB	36	
3. 19 Screening of bacteriocin	36	
3.20 Inhibitory effects using microtiter plates	36	
3.21 Probiotic properties	37	
3.21.1 Acid tolerance and bile resistance	37	
3.21.2 Phenol tolerance	37	
3.21.3 Antibiotic susceptibility of selected culture	38	
3.22 Proximate analysis	38	
3.22.1 Ash content	38	
3.22.2 Moisture content	38	
3.22.3 Crude protein determination	39	
3.22.4 Crude fibre content determination	39	
3.22.5 Determination of crude fat	40	
3.22.6 Determination of carbohydrate content (by difference)	40	
3.23 Antinutritional components	40	
3.23.1 Phytate determination	40	
3.23.2 Test for carbohydrates	41	
3.23.3 Total phenol determination	41	
3.23.5 Saponin determination	41	
3.23.6 Determination of tannin	41	
3.23.7 Test for quinone	41	
3.23.8 Test for alkaloids	41	
3.24 Shelf life (preservation of fruits)	41	
3.25 Statistical analysis	42	

CHAPTER FOUR: RESULTS 43		
4.1 Enumeration of bacterial population	43	
4.2 Identification of bacterial isolates	43	
4.3 Safety evaluation	47	
4.3.1 Haemolysis of LAB isolates	47	
4.3.2 Antibiotic susceptibility assay	49	
4.4 Screening of LAB isolates for antibacterial production	49	
4.5 Nutritional evaluation of fermented rice	51	
4.6 Probiotic assay	52	
4.7 Shelf-life studies	54	
CHAPTER FIVE: DISCUSSION	57	
CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS	62	
6.1 Summary	62	
6.2 Conclusion	63	
6.3 Contribution to knowledge	63	
5.4 Recommendations 6		
6.5 Limitation to study		
6.6 Areas for further study	63	
REFERENCES	64	
APPENDIX	77	
Appendix A	78	
Appendix B		
Appendix C		
Appendix D		
Appendix E	87	
Appendix F	88	

LIST OF FIGURES

Figures	Title of figures	Pages
2.0:	NERICA (short grain)	6
2.1:	NERICA (Long grain)	6
2.2:	<i>Oryza glabberima</i> (Ofada grain)	6
2.3:	Images of Waina	9
2.4:	Images of Idli	9
2.5:	Images Selroti	9
2.6:	Characteristics of ideal probiotics	14
2.7:	Antimicrobial substances generated by LAB	16
2.8:	Biosynthesis, separation, and application	
	of bacteriocins as antibacterial and preservation agents	17
2.9:	LAB bacteriocins by lactic acid bacteria	20
2.10:	Modes of applications of bacteriocin in the control of foodborne path	ogens25
4.1:	Unrooted phylogenetic tree for three characterized LAB isolates	46

LIST OF TABLES

Tables	Title of tables Page	es
2.0:	Nutritional difference between brown and white rice	5
2.1:	Rice grain size, and shape variation IRRI (2002) classification	5
2.2:	Types of fermented rice	8
2.3:	Classification of bacteriocin	19
2.4:	Gram-positive bacteria's bacteriocins classification	21
2.5:	Bacteriocin receptors in Gram-positive bacteria	23
2.6:	LAB employed in the food sector to combat foodborne pathogen	25
2.7:	Bacteriocin application in various forms and their effects	
	on food product, physicochemical and sensory qualities	28
2.8:	Limiting factors of bacteriocin efficacy in foods	30
2.9:	Gaps in literature	31
4.1:	Morphological identification of Bacterial isolates from fermented rice	43
4.2:	Cultural, Morphological and Biochemical characteristics of	
	Bacterial isolates	44
4.3:	Molecular characterization	45
4.4:	Haemolysis (Safety evaluation)	47
4.5:	Zones of inhibition (mm) of bacteria isolates	48
4.5.1:	Minimum inhibitory concentration	49
4.6:	Qualitative phytochemical analysis of fermented rice samples	52
4.6.1:	Proximate analysis	52
4.7:	pH (%) survival rate of LAB isolates under different pH	53
4.7.1:	Phenol tolerance survival rate of LAB isolates under different phenol	53

4.7.2:	Bile tolerance survival rate of LAB isolates under different bile salt	53
4.7.3:	Survival rate of isolates at 0.5 % bile salt, phenol and pH 5	53
4.7.4:	Comparison between phytate content in fermented and raw grain rice	54
4.8:	Bacterial count of LAB treated papaya sample	54
4.9:	Shelf-life studies	55

LIST OF ABBREVIATIONS

ACE	Angiotensin converting enzyme
AMC	Antimicrobial compound
BLAST	Basic local alignment search tool
BSH	Bile salt hydrolase
CFS	Cell-free supernatant
EDTA	Ethylenediamine tetra acetic acid
EPS	Exopolysaccharides
GABA	Gamma-aminobutyric acid
GRAS	Generally regarded as safe
ННР	High hydrostatic pressure
HPP	High pressure processing
LAB	Lactic acid bacteria
LA	Lactic acid
MIC	Minimum inhibitory concentration
MRS	De Man, Rogosa and sharpe
M.W	Molecular weight
NCBI	National center for biotechnology information
NERICA	New Rice for Africa
NSLAB	Non-starter lactic acid bacteria
PBS	Phosphate buffer saline
SLAB	Starter lactic acid bacteria
TBC	Total bacteria count

ABSTRACT

Rice is a staple food consumed in the world. Current statistics of rice consumption in Nigeria at December 2021/2022 is 6.900 million tonnes, and 6.950 million metric tonnes. Rice is known for its rich energy source, because of its carbohydrate content. Rice can also serve as a functional food when fermented, releasing microorganisms with health benefits and also for its bio-preservative purpose. The aim of this study was to determine the functional diversity of Lactic acid bacteria (LAB) isolated from fermented rice (Oryza glaberrima, and NERICA). In this study different varieties of raw rice were fermented. LAB genera were isolated from the fermented rice. The cultural, morphological, biochemical, and genotypic characterization of the LAB isolates were performed using standard methods. Proximate, Phytochemical and Phytate (antinutritional agent) analyses were carried out using Association of Analytical Methods (AOAC) to evaluate the nutritional content of fermented rice. Probiotic parameters were assessed (phenol, bile-salt, and pH) and different concentrations of 0.5 %, 1 %, pH 2, pH 5 and pH 7 (control). Safety assessment assay using haemolysis test and antibiotic susceptibility test (using gram-positive antibiotic disk) was carried out on the LAB isolates. Overlay, Kirby-Bauer agar well diffusion, and microtitre plates methods were used in the analyses of antibacterial activities for the LAB isolates, this was done to screen isolates for genotypic characterization, and bio-preservative test using bioactive packaging. Genotypic characterization revealed the three isolates to be Lactiplantibacillus sp. Strain DGZ 2 ON954756, and two Pediococcus sp. DGZ-1 ON954755 and Pediococcus sp. DGZ 2 ON954757. The proximate, fermented rice showed Ash content (0.00 \pm 0.001), moisture content 0.05 \pm 0.02, carbohydrate (0.01 \pm 0.02), protein (0.00 \pm 0.001), crude fibre (0.00 \pm 0.01) and fat contents (0.01 \pm 0.02), phytochemicals present include Alkaloids, Quinone, Phenol, and Flavonoids. For the reduction in phytate content of two fermented rice sample, data obtained was reduction from $4.46 \pm 0.02 - 3.47 \pm 0.08$ and $5.45 \pm 0.02 - 4.46 \pm 0.01$. For the probiotic parameter pH of the LAB isolates showed better survival rate at pH 7 than pH 2, pH 5 were average survival rate was noted. In 0.5% Bile salt and phenol concentration the Lactobacillus species had better survival at 80, 85, and 91 % bile salt and 81, 81, and 84 % for phenol. The antibiotic susceptibility assay showed that LAB isolates were susceptible to erythromycin (10 μ g), ciprofloxacin (10 μ g) and streptomycin (30 μ g). The hemolytic data obtained revealed that two *Pediococcus sp* exhibited α -haemolysis, only *Lactiplantibacillus sp*. exhibited γ haemolysis. LAB isolates showed inhibitory actions on foodborne pathogenic organism Listeria monocytogenes ATTC 78644 when overlay and micro-titre plate methods were used. For the shelf-life improvement of *Carica papaya L* when storage bags were treated with the three screened LAB isolates under 4 °C, the data obtained showed that Carica papaya L shelf life was extended when compared with the control stored at 4 °C. This study recommends fermented rice as a good functional food.

Keywords: Fermented rice, Functional food, Lactic acid bacteria (LAB), Probiotics, and Shelf-life.