EFFECT OF CASSIA FISTULA AND CITRUS SINESIS ON THE ELECTRO-KINETIC DEPOSITION OF ZINC ON MILD STEEL

NNAMBA, OGECHI JOY (14CM017033)

JULY, 2022

EFFECT OF CASSIA FISTULA AND CITRUS SINESIS ON THE ELECTRO-KINETIC DEPOSITION OF ZINC ON MILD STEEL

BY

NNAMBA OGECHI JOY (14CM017033) B.Eng. Mechanical Engineering, Covenant University, Ota.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng.) DEGREE IN MECHANICAL ENGINEERING IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

JULY, 2022

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfillment of the requirements
for the award of a degree of Master of Engineering in Mechanical Engineering in the Department
of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. Taiwo B. Ewewumi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, NNAMBA, OGECHI JOY (14CM017033) declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. Olugbenga A. Omotosho of the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

NNAMBA, OGECHI JOY

Signature and Date

CERTIFICATION

This is to certify that the research work titled "EFFECT OF CASSIA FISTULA AND CITRUS SINESIS ON THE ELECTROKINETIC DEPOSITION OF ZINC ON MILD STEEL" is an original research work carried out by NNAMBA, OGECHI JOY (14CM017033) meets the requirements and regulations governing the award of Master of Engineering (M.Eng.) degree in Mechanical Engineering from the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr. Olugbenga A. Omotosho (Supervisor)

Signature and Date

Prof. Joshua O. Okeniyi (Head of Department)

Signature and Date

Prof. Chigbo A. Mgbemene (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This research work is dedicated first and foremost to God Almighty, the custodian of all wisdom, knowledge and understanding for His grace and favor throughout the duration of carrying out this research. Then to my family for their endless support and love.

ACKNOWLEDGEMENTS

My profound gratitude goes firstly to God Almighty for His unspeakable gifts wherewith He has so lavishly poured upon me, and His daily benefits that I enjoy, most pertinent of which is life itself.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, whose words have always been a constant reminder that anything is possible and achievable. Thank you very much sir, and may your legacy outlive you. Also, to the Vice-Chancellor, Prof. Humphrey Adebayo, the Dean School of Postgraduate Studies, Prof. Akan Williams, Prof. Joshua Okeniyi, the Head of Department of Mechanical Engineering Department, and the Postgraduate Coordinator, Dr. Funmi Joseph for all their tireless pursuits in seeing to the realization of vision 10:2022 for Covenant University being among the top ten Universities in the World. May God Almighty immensely reward all your efforts.

My deep appreciation goes to my amiable supervisor, Dr. Olugbenga Omotosho for his kind-heartedness, support, mentorship and advice he gave to me through the stages of this research work enabling me to complete in time. Many thanks also to the entire Academic and Non-Academic staff in the Department of Mechanical Engineering. May the good Lord reward you all for your investments in my life.

I also want to deeply appreciate my colleagues and friends: Kaki Joy, Shogo Adebanke, Williams Joseph and Ayoola Daniel to name a few, whose contributions were invaluable all through my postgraduate studies. God bless you all and reward you abundantly.

My heartfelt and deep appreciation goes to my parent, Mr. Nnamba who has always been there for me and stood in prayers for my destiny. Words cannot express how indebted I am to you. I pray you will live long enough to reap the benefits of the seeds you have sown in my life and that of my siblings. I love you and God bless you.

TABLE OF CONTENTS

CONTENTS	PAGES
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	vii
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS AND SYMBOLS	xvi
ABSTRACT	
xvii	
CHAPTER ONE:INTRODUCTION	1
1.1 Background	1
1.1.1 Electrodeposition Coating	1
1.1.2 Coating Materials	2
1.1.3 Nanocomposite Coating	4
1.1.4 Coating Simulation Modeling	5
1.2 Statement of the Problem	6
1.3 Aim and Objectives of the Study	8
1.4 Scope of the Study	8
1.5 Justification of the Study	8
1.6 Outline of the Study	8
CHAPTER TWO: LITERATURE REVIEW	
10	
2.1 Electrodeposition	10
2.1.1 Introduction	10

2.1	.2	Process of Electrodeposition	10
2.1	.3	Areas of Application	12
2.1	.4	Surface Preparation	12
2.2	Тур	es of Electrodeposition	13
2.2	2.1	Direct Current (DC) Electrodeposition	13
2.2	2.2	Pulse Current (PC) Electrodeposition	14
2.2	2.3	Laser Induced Metal Deposition (LID)	16
2.3	Fac	tors affecting Electrodeposition process	18
2.3	.1	Effect of pH	18
2.3	3.2	Effect of Temperature	20
2.3	3.3	Effect of Current Density and Distribution	21
2.3	3.4	Effect of Plating Time	23
2.3	3.5	Effect of Metal Ions	24
2.3	6.6	Effect of Bath Concentration	26
2.3	3.7	Effect of Agitation	27
2.4	Zino	c Electroplating	29
2.4	.1	Zinc Plating Baths	30
2.5	Nan	no-additives	32
2.5	5.1	Utilization of Green Additives in Electrodeposition	33
2.5	5.2	Utilization of Green Additives on Electrodeposition of Zinc/Zinc Alloys on	Mild
Ste	eel		35
2.6	Sim	ulation	37
2.6	5.1	Simulation of Electrodeposition	38
2.7	Mod	delling Problem Formulation	40
2.7	'.1	Introduction	40
2.7	.2	Methodology	40
2.7	'.3	Governing Equations	42
2.7	'.4	Boundary and Initial Conditions	43
2.8	Bas	is of selection of Cassia fistula and Citrus sinesis	43
2.9	Gap	os in Literature	45

СН	APT	ΓER	THREE: METHOOLOGY	46
3	.1	Intr	roduction	46
3	.2	Ma	terials	46
	3.2	2.1	Workpiece	46
	3.2	2.2	Extraction of Nano-additives	46
	3.2	2.3	Mild Steel Sample Preparation	49
	3.2	2.4	Electrodeposition Solution (Electrolyte) Preparation	49
	3.2	2.5	Electrodeposition Setup	50
	3.2	2.6	Scanning Electron Microscope (SEM)/Energy Dispersive Spectroscopy (EDS)	52
	3.2	2.7	X-ray Diffractometer (XRD)	53
	3.2	2.8	Electrochemical Analysis	54
	3.2	2.9	Electrical Property Analysis	55
	3.2	2.10	Adhesion Tests	56
3	.3	Me	thods	58
	3.3	3.1	Post Plating Treatment	58
	3.3	3.2	Analysis of Plated Samples	58
	3.3	3.3	COMSOL Simulation	58
СН	APT	ΓER	FOUR: RESULTS AND DISCUSSION	69
4	.1	Intr	roduction	69
4	.2	X-r	ay Diffraction Analysis	69
4	.3	We	ight Change	70
4	.4	Ele	ctrical Properties	72
4	5	Adl	hesion Properties	79
4	.6	Aes	sthetics Analysis	81
4	.7	Sca	nning Electron Microscope and Energy Disperse Spectroscopy Analysis	81
4	.8	Cor	rosion Monitoring Test Results	90
4	.9	Sim	nulation Results	94

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS			98
	5.1	Introduction	98
	5.2	Conclusion	98
	5.3	Recommendations	99
	5.4	Contributions to Knowledge	99

REFERENCES

100

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
Figure 2.1:	Schematic diagram of Electrodeposition	11
Figure 2.2:	Schematic diagram of DC electrodeposition and the deposit's growth	process
(Mandati et a	al., 2018)	14
Figure 2.3:	Schematic diagram of PC electrodeposition and the deposit's growth	process
(Mandati et a	al., 2018).	15
Figure 2.4:	Flow chart for COMSOL simulation showing pre-processing, processing ar	nd post-
processing s	teps	41
Figure 3. 1:	Electrodeposition setup	50
Figure 3.2:	Scanning Electron Microscope	53
Figure 3. 3:	Rigaku X-ray Diffractometer	54
Figure 3. 4:	Electrical conductivity setup	56
Figure 3. 5:	Selection of physics module	59
Figure 3. 6:	Selection of type of Study	59
Figure 3. 7:	Geometry selection	60
Figure 3. 8:	Definitions tab	61
Figure 3. 9:	Defining the electrodes	61
Figure 3. 10:	: Defining the electrolyte	62
Figure 3. 11:	: Defining the anode properties (Zinc)	62
Figure 3. 12:	: Defining the anode reaction properties	63
Figure 3. 13:	: Defining the cathode properties (Mild Steel)	64
Figure 3. 14:	: Defining cathode reaction properties	65
Figure 3. 15:	: Defining mesh	65
Figure 4. 1:	X-ray Diffraction graph for OP additive	69
Figure 4, 2.6	a). (b): X-ray Diffraction graph for CF additive	70

Figure 4. 3: Mass of Aluminum deposited on mild steel via electrodeposition	n with and without
additives for Al ₂ Cl ₃ samples	71
Figure 4. 4: Mass of Aluminum deposited on mild steel via electrodeposition	n with and without
additives for ZnSO ₄ samples	71
Figure 4. 5: Mass of Aluminum deposited on mild steel via electrodeposition	n with and without
additives for Al ₂ Cl ₃ +ZnSO ₄ samples	72
Figure 4. 6: OP 15mins Samples + Control	73
Figure 4. 7: CF 15 mins Samples + Control	73
Figure 4. 8: OP + CF 15 mins Samples + Control	74
Figure 4. 9: OP 25 mins Samples + Control	74
Figure 4. 10: CF 25 mins Samples + Control	75
Figure 4. 11: OP + CF 25 mins Samples + Control	75
Figure 4. 12: OP 15mins Samples + Control	76
Figure 4. 13: CF 15 mins Samples + Control	76
Figure 4. 14: OP + CF 15 mins Samples + Control	77
Figure 4. 15: OP 25 mins Samples + Control	77
Figure 4. 16: CF 25 mins Samples + Control	78
Figure 4. 17: OP + CF 25 mins Samples + Control	78
Figure 4. 18 (a): 2000X (b): 4000X	82
Figure 4. 19: EDS analysis of A1	82
Figure 4. 20(a): 2000X (b): 4000X	83
Figure 4. 21: EDS analysis for D1	83
Figure 4. 22 (a): 2000X (b): 4000X	84
Figure 4. 23: EDS analysis of G2	84
Figure 4. 24 (a): 2000X (b): 4000X	85
Figure 4. 25: EDS analysis of H2	85
Figure 4. 26 (a): 2000X (b): 4000X	86
Figure 4. 27: EDS analysis of J3	86
Figure 4. 28 (a): 2000X (b): 4000X	87
Figure 4. 29: EDS analysis of K3	87
Figure 4. 30 (a): 2000X (b): 4000X	88

Figure 4. 31: EDS analysis of M1	88
Figure 4. 32 (a): 2000X (b): 4000X	89
Figure 4. 33: EDS analysis for Q1	89
Figure 4. 34: LSV for 15 minutes samples + Mild steel	91
Figure 4. 35: LSV for 25 minutes samples + Mild steel	92
Figure 4. 36: OCP for 15 minutes samples + Mild steel	92
Figure 4. 37: OCP for 25 minutes samples + Mild steel	93
Figure 4. 38: 3D plot showing thickness change in anodes	94
Figure 4. 39: 3D plot showing thickness change in cathode	94
Figure 4. 40: 1D Plot Graph for anode thickness change	95
Figure 4. 41: 1D Plot Graph for cathode thickness change	95
Figure 4. 42: 1D Plot Graph for anode mass change	96
Figure 4. 43: 1D Plot Graph for cathode mass change	96

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
Table 2. 1:	Cyanide Bath Constituents	30
Table 2. 2:	Bath solutions, their bath constituents and its composition (Ito & Sakakibara	a, 2011)
		31
Table 2. 3:	Chemical composition of Cassia fistula pulp fraction (Dawood et al., 2021)	44
Table 2. 4:	Chemical compositions of Citrus sinesis peels and their %wt (Ishtiaq et al., 20	015) 44
Table 2. 5:	Some elements present in Citrus sinesis peels and their concentrations (A	l-Saadi,
Ahmad & S	Sa'eed, 2009)	45
Table 3. 1:	Chemical composition of mild steel (Madhukar et al., 2017)	46
Table 3. 2:	The bath addition agents and plating times used	47
Table 3. 3:	Sample description and concentration	48
Table 3. 4:	Bath parameters, range and optimal value for an acid chloride bath (Jain a	nd Jain,
2021)		49
Table 3. 5:	Design of experiment	51
Table 3. 6:	ASTM D3359 Standard	57
Table 4. 1:	Adhesion tests on plated samples according to the ASTM D3359 Standards	80
Table 4. 2:	Outline of the Potentiodynamic polarization results for HCl solution	90

LIST OF ABBREVIATIONS AND SYMBOLS

1D: 1-Dimesional

3D: 3-Dimensional

CR: Corrosion Rate

Ecorr: Corrosion Potential

EDS: Energy Dispersive Spectroscopy

icorr: Corrosion Current

jcorr: Corrosion Current Density

LSV: Linear Sweep Voltammetry

OCP: Open Circuit Potential

Rp: Polarization Resistance

SEM: Scanning Electron Microscope

XRD: X-ray Diffractometer

ABSTRACT

Mild Steel is a metal that is used in various industries because of its good mechanical properties,

however there is a need to improve its physical and tribological properties, hence the reason for

introducing coating. This process has proven over time to be an effective method for reducing

the corrosion rate of mild steel. This study used zinc as a coating material for mild steel and also

used green additives during the electrodeposition process to enhance the physical and mechanical

properties of the zinc coating. The plating times used were 15 and 25 minutes. The electrical

properties were examined with the aid of a voltage-ammeter device. The Digi-Ivy Potentiostat

was used in studying the corrosion properties of the coatings. The microstructural study of the

coated samples was carried out using the Scanning Electron Microscope (SEM). It was

discovered that the physical, electrical conductivity, corrosion resistance properties and surface

morphology of the coated samples improved when Cassia fistula and Citrus sinesis in certain

concentrations were used. COMSOL Multiphysics software was used to validate the

experimental data that showed that as plating time increases, the mass deposited on the cathode

(mild steel) increased.

Keywords: Electrodeposition, Green Additives, Corrosion, COMSOL Multiphysics.

xvii