DEVELOPMENT OF FUNCTIONAL POLYURETHANE-CENOSPHERES HYBRID NANOCOMPOSITE COATINGS FROM *Ricinus communis* SEED OIL

ADEBOWALE, ADEDAMOLA DANIEL (14CC017704) B.Sc Industrial Chemistry Covenant University, Ota.

JULY, 2022

DEVELOPMENT OF FUNCTIONAL POLYURETHANE-CENOSPHERES HYBRID NANOCOMPOSITE COATINGS FROM *Ricinus communis* SEED OIL

BY

ADEBOWALE, ADEDAMOLA DANIEL (14CC017704) B.Sc Industrial Chemistry Covenant University, Ota.

DISSERTATION SUBMITTED TO THE SCHOOL Α OF POSTGRADUATE STUDIES, IN PARTIAL FULFILMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE** (**M.Sc.**) DEGREE IN INDUSTRIAL CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND **TECHNOLOGY, COVENANT UNIVERSITY**

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Masters of Science in Industrial Chemistry in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ADEBOWALE, ADEDAMOLA DANIEL (14CC017704), declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Dr. Tolutope Oluwasegun Siyanbola of the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

ADEBOWALE, DANIEL ADEDAMOLA

Signature and Date

v

CERTIFICATION

We certify that this dissertation titled "DEVELOPMENT OF FUNCTIONAL POLYURETHANE-CENOSPHERES HYBRID NANOCOMPOSITE COATINGS FROM *Ricinus communis* SEED OIL" is the original research work carried out by ADEBOWALE, ADEDAMOLA DANIEL (14CC017704) in the Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Tolutope O. Siyanbola of the Department of Chemistry. We have examined and found this research work acceptable as part of the requirements for the award of the degree of Master of Science (M.Sc.) in Industrial Chemistry.

Dr. Tolutope O. Siyanbola (Supervisor)

Prof. Joseph A. O. Olugbuyiro (Head of Department)

Prof. Olayinka T. Asekun (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to God Almighty.

ACKNOWLEDGEMENTS

All the praise and adoration belong to GOD Almighty for my existence and for his mercy over me.

Furthermore, I would like to appreciate the Chancellor of this reputable university, Covenant University, Dr. David O. Oyedepo, the Vice-Chancellor, Prof. H.A Adebayo, the Dean Postgraduate Studies, Prof. Akan B. Williams, and the Board of Regent of Covenant University for their unwavering commitment to making Covenant University an institution of global repute. I also appreciate the Registrar of Covenant University, Mr. Emmanuel Igban and the Dean of the College of Science and Technology, Prof. Timothy Anake.

My sincere gratitude goes to my supervisor Dr. Siyanbola T.O. for his guidance and invaluable contribution to my research work. I appreciate the Head of the Department, Prof J.A.O Olugbuyiro, for his contribution to enhancing the smooth completion of the work. I appreciate my program coordinator Dr. J.A Adekoya for his kind understanding and contribution. I also appreciate Dr. Cyril Ehi-Eromosele. I sincerely appreciate the Director of Covenant University, Central Instrumentation Research Facility, Prof. Olayinka O. Ajani and the entire CUCIRF team for their benevolence during the instrumentation stage of the work. To the entire faculty members of Chemistry Department, Covenant University, I appreciate you all for always coming through each time when there was a need. I also appreciate Mrs. Adekeye of the Department of Microbiology, for your gracious deed and support during the extraction procedures. I also appreciate my course mates for making my master's degree programme worthwhile.

I would also like to appreciate Miss Spandana Rao for her invaluable contribution to my research work. My heartfelt gratitude goes to my parents Mr. and Mrs. Adebowale for their financial support, thank you for always believing me at every point.

TABLE OF CONTENTS

PAGES

COVER PAGE	
TITLE PAGE	
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF SCHEMES	xii
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv
ABSTRACT	XV

1
1
1
2
5
6
7
8
8
8
8
8
8
9

CHAPTER TWO: LITERATURE REVIEW	10
2.1 Extraction of Seed Oils	10
2.1.1 Hot and Steam Extraction	10
2.1.2 Solvent Extraction	10
2.1.3 Mechanical Screw press method of extraction	10
2.1.4 Ultrasonic assisted extraction	11
2.1.5 Supercritical fluid extraction	11
2.1.6 Microwave assisted extraction	11
2.2 Refining extracted seed oils	11
2.3 Characterization of the physio-chemical properties of Seed oils	12
2.3.1 Iodine value (IV)	12
2.3.2 Peroxide value (PI)	13
2.3.3 Saponification value (SV)	13
2.3.4 Acid value (AV)	13

2.3.5 Viscosity	13
2.3.6 Refractive Index (RI)	14
2.3.7 Specific gravity (SG)	14
2.3.8 Flash point	14
2.4 Castor Oil	14
2.5 Preparation of Polyol	16
2.5.1 Epoxidation / Oxirane ring Opening	17
2.6 Polyurethane	17
2.6.1 One-step synthesis	19
2.6.2 Two-step synthesis	19
2.7 Waterborne Polyurethane	19
2.8 Thermoplastic Polyurethane	19
2.9 Rigid Polyurethane	19
2.10 Flexible Polyurethane	19
2.11 Polyurethane material application in daily life	20
2.12 Isocyanates	20
2.13 Nanomaterials	21
2.13.1 Sol-Gel process	22
2.14 Fly Ash Cenospheres	23
2.15 Coating antimicrobial activity	24
2.16 Research Gap	24

CHAPTER THREE: MATERIALS AND METHODS	25
3.1 Materials	25
3.2 Extraction of the Castor Oil from Castor Seeds	25
3.3 Sample Clean-up	25
3.4 Physio-chemical analyses of Castor Oil (CSO)	25
3.4.1 Iodine value (IOV)	26
3.4.2 Acid value (AV)	26
3.4.3 Saponification value (SV)	26
3.4.4 Refractive Index (RI)	27
3.4.5 Viscosity	27
3.5 Physicochemical evaluation of the solubility property	27
3.6 Preparation of Castor Oil Polyurethane	28
3.7 Preparation of Fly Ash Cenospheres	29
3.8 Synthesis of Polyurethane hybrid nanocomposite	29
3.9 Spectroscopic Analysis	31
3.9.1 Fourier Transform Infrared Spectroscopy (FT-IR)	31
3.9.2 Nuclear Magnetic Resonance (NMR)	31
3.10 Scanning Electron Microscope (SEM)	31
3.11 X-ray Diffraction (XRD)	31
3.12 Thermogravimetric Analysis	31
3.13 Antimicrobial Analysis	31

CHAPTER FOUR: RESULTS	32
4.1 Physicochemical Evaluations of polyols	32
4.2 Spectroscopic characterization of the Polyol	33
4.3 Spectroscopic characterization of PU and polymeric hybrid composite	34

4.4 X-ray Diffraction analysis	36
4.5 Morphological Analysis of the Hybrid composite	39
4.6 Thermogravimetric Analysis and Differential Thermal Analysis	39
4.7 Antimicrobial evaluations	42

CHAPTER FIVE: DISCUSSION	43
5.1 Physicochemical evaluations of polyols	43
5.2 Solubility property evaluation	43
5.3 Spectroscopic characterization of the polyol	43
5.4 Spectroscopic characterization of PU and polymeric hybrid composite	43
5.5 X-Ray Diffraction	44
5.6 Morphological Analysis of the Hybrid composite	44
5.7 Thermogravimetric Analysis and Differential Thermal Analysis	44
5.8 Antimicrobial analysis	

CHAPTER SIX: CONCLUSION AND RECOMMENDATION	46
6.1 Summary	46
6.2 Conclusions	46
6.3 Contribution to Knowledge	46
6.4 Recommendation	46

REFERENCES

LIST OF FIGURES

FIGURES TITLE OF FIGURES PAGES Figure 4.1 FT-IR spectrum of the Castor oil 33 Figure 4.2 FT-IR spectrum of the synthesised PU 34 Figure 4.3 ¹H NMR spectrum of the synthesised PU 35 Figure 4.4 FT-IR spectrum of the synthesised PU-CFA 36 Figure 4.5 XRD spectrum of the synthesised CFA 37 Figure 4.6 XRD spectrum of the synthesised PU-CFA 38 The SEM micrograms of A. CFA, B. PU-CFA, and C. EDAX of CFA, D. EDAX Figure 4.7 of PU-CFA 39 Figure 4.8 TGA comparison between synthesised PU and PU-CFA 40

i iguie no		
Figure 4.9	DTA comparison between synthesised PU and PU-CFA	

41

LIST OF SCHEMES

SCHEMES	TITLE OF SCHEMES	PAGES
Scheme 1.1	Structure of Triglyceride with different fatty acid chains	5
Scheme 2.1	Structure of triglyceride Ricinoleic acid (Castor oil)	15
Scheme 2.2	Structure of Ricinoleic acid	16
Scheme 2.3	Formation of Urethane	18
Scheme 3.1	Reaction of the synthesised PU	28
Scheme 3.2	Preparation of CFA nanoparticles	29
Scheme 3.3	Reaction of the synthesised PU-CFA	30

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
Table 1.1	Various examples of fatty acids found in seed oil	3
Table 2.1	Various examples of diisocyanate	20
Table 2.2	Coating properties that nanomaterials improve (Fernando, 2009; Zaho	oor <i>et al.</i> ,
	2021; Vidales-Herrera & López, 2020; Wolfgang et al., 2013).	22
Table 4.1	Physicochemical properties comparison between castor oil, soybean oi	l, Yellow
	Oleanda, Linseed oil and Moringa oleifera	32
Table 4.2	Physicochemical evaluation of CSO and PU-CFA solubility property	33
Table 4.3	Antimicrobial activities of PU and PU-CFA	42
Table 5.1	Thermogravimetric comparison between PU and PU-CFA	44

LIST OF ACRONYMS AND ABBREVIATIONS

- ¹³C NMR Carbon nuclear magnetic resonance
- ¹H NMR Hydrogen nuclear magnetic resonance
- CFA Cenospheres Fly Ash
- CSO Castor Seed Oil
- FT-IR Fourier Transform Infrared
- IPDI Isophorone Diisocyanate
- MIBK Methyl Isobutyl Ketone
- NMR Nuclear Magnetic Resonance
- PU Polyurethane
- PU-CFA Polyurethane-Cenospheres Fly Ash
- SEM Scanning Electron Microscope
- TMP Trimethylolpropane
- WPU Waterborne polyurethane

ABSTRACT

The utilisation of plant seed oils as a sustainable and biodegradable substitute for petroleum-based chemicals cannot be overemphasised. This renewable feedstock is vital for the development of polymeric organic coatings. This report investigates the one-spot synthesis of castor seed oil, Isophorone diisocyanate, Trimethylolpropane (cross linker), and the percentage composition of prepared cenosphere nanoparticles incorporated within the polymer matrix. The hybrid coatings were characterised using FT-IR, XRD, SEM, and NMR, as they all confirm the presence of the cenosphere fly ash nanoparticles in the polyurethane. The FT-IR spectrum shows the presence of absorption peaks at 1350 cm⁻¹, 1102 cm⁻¹, and 1000 cm⁻¹ which represent the (Al=O), (SiO-Si), (AlO₄) functional groups respectively. The SEM EDX of the PU-CFA revealed that aluminium, silica and carbon have a percentage weight of 2.8 Wt.%, 4.6 Wt.%, 40.2 Wt.% respectively. The thermal stability of the synthesised composites was evaluated on a thermogravimetric analyzer (TGA). The TGA revealed that PU-CFA lost 50%, 30%, and 90% of its weight at 418.16°C, 470.17°C, 506.96°C respectively. The antimicrobial activity shows that PU-CFA composite showed improved resistance towards Staphylococcus aureus and Escherichia coli.

Keywords: Castor, Cenospheres, Antimicrobial, Polyurethane, Nanoparticles.