DEVELOPMENT OF A SOLAR CHARGING STATION FOR OFF-GRID APPLICATION

AYOOLA, AANUOLUWA DANIEL (20PCM02101)

JULY, 2022

DEVELOPMENT OF A SOLAR CHARGING STATION FOR OFF-GRID APPLICATION

BY

AYOOLA, AANUOLUWA DANIEL (20PCM02101) B.Eng. Mechanical Engineering, Landmark University, Omu-aran.

DISSERTATION SUBMITTED TO SCHOOL OF Α THE POSTGRADUATE STUDIES OF COVENANT UNIVERSITY, OTA, OGUN PARTIAL STATE, NIGERIA IN FULFILMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING** (M.Eng.) DEGREE IN MECHANICAL ENGINEERING, IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA.

JULY, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of Master of Engineering (M.Eng.) degree in Mechanical Engineering, Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AYOOLA, AANUOLUWA DANIEL (20PCM02101) declare that this research work titled "DEVELOPMENT OF A SOLAR CHARGING STATION FOR OFF-GRID APPLICATION" was carried out by me under the supervision of Dr. P.O Babalola of the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere, and the results of this research were originally obtained. All information cited from published and unpublished literature has been duly referenced.

AYOOLA, AANUOLUWA DANIEL

Signature and Date

v

CERTIFICATION

This is to certify that the research work titled "DEVELOPMENT OF A SOLAR CHARGING STATION FOR OFF-GRID APPLICATION" is an original research work carried out by AYOOLA, AANUOLUWA DANIEL meets the requirements and regulations governing the award of Master of Engineering (M.Eng.) degree in Mechanical Engineering, from the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr. Phillip O. Babalola (Supervisor)

Prof. Joshua O. Okeniyi (Head of Department)

Prof. Chigbo A. Mgbemene (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work first to the almighty God for His guidance and strength in carrying out this work. My Parents, Engr. Dr. Stephen Ayoola and Mrs. Titilola Ayoola for their support in different ways throughout the course of this work. Also, to my friends and every other person that made this work a success, I say thank you, and God bless you all abundantly.

ACKNOWLEDGMENT

I want to appreciate God for the grace and strength to complete this work, and my parents Engr. Dr. Stephen and Mrs. Titilola Ayoola for their support always throughout the course of my programme at Covenant University.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, whose words have always been a constant reminder that anything is possible and achievable. Thank you very much sir, and may your legacy outlive you. Also, to the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, the Head of Department Mechanical Engineering Department, Prof Joshua O. Okeniyi of Covenant University for all their tireless pursuits in seeing to the realization of vision 10:2022 for Covenant University being among the top ten Universities in the World. May God Almighty immensely reward all your efforts.

My sincere appreciation goes to my supervisor Dr. P.O Babalola for his guidance and assistance throughout the period of carrying out this work. I appreciate the Head of the Department of Mechanical Engineering, Prof. Joshua O. Okeniyi, and the Post Graduate Coordinator Dr. F. Joseph for their assistance in seeing to the completion of this dissertation.

I would also like to appreciate some members of the Faculty and Staff of the Department of Mechanical Engineering such as Prof. Ajayi, Prof. Oyedepo, Dr. Enesi, Dr. Dirisu, Engr. Adeoye, Mr. John Morounfolu, and Mr. Segun and every other Staff and Faculty in the Department of Mechanical Engineering for their warm reception and encouragement throughout the course of my programme.

Also, to Ilesanmi, Yinka, Joseph, Michael, Marvelous, Ogechi, ThankGod, and Engr. Fisayo, members of the class of 2020/2021 MEng. Mechanical Engineering, I say thank you for your support and being the best colleagues, anyone could ask for. To my senior colleague, Miss Okwilagwe Osise Osoriamhe, I say thank you for your guidance and assistance always.

I want to also thank my siblings (Ayo, Ife, and Ire), also my friends (Ifunanya, Joy Kaki, Nonye, Ikike Bassey, Folorunsho), and the others which I in no way take for granted, and well-wishers for their motivation and support throughout the course of my study at Covenant University. God bless you all.

TABLE OF CONTENTS

CONTENTS	PAGES	
ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGMENT LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF EQUATIONS ABBRIEVATIONS, SYMBOLS AND NOMENCLATURE ABSTRACT	iiii iv v vii viii viii xiii xiii xivv xv xv	
CHAPTER ONE: INTRODUCTION	1	
1.1 Background of the Study	1	
1.2 Research Problem	4	
1.3 Aim of Study	5	
1.4 Study Objectives	5	
1.5 Scope of Study	5	
1.6 Justification of Study	6	
1.7 Significance of the Study	6	
CHAPTER TWO: LITERATURE REVIEW	7	
2.1 History of Photovoltaic Cells	7	
2.2 Photovoltaic Cells	8	
2.3 Generation of Photovoltaic Cells	9	
2.3.1 First Generation Photovoltaic Cells	10	
2.3.2 Second Generation Photovoltaic Cells	12	
2.3.3 Third Generation Photovoltaic Cells	15	
2.3.4 Fourth Generation Photovoltaic Cells	24	
2.4 Future Prospects of Photovoltaic Cells	31	
2.5 Physics of Solar Cells	33	
2.5.1 Poisson Equation	33	
2.5.2 Transport Model Equations for Drift-Diffusion	34	

2.5.3 Continuity Equations	34
2.6 Mechanisms for Improving Solar Cell Efficiency	35
2.6.1 Up Conversion	35
2.6.2 Down Conversion	36
2.6.3 Intermediate Band	36
2.6.4 Multiple Carrier (exciton) Generation	36
2.6.5 Hot Carrier Generation	37
CHAPTER THREE: MATERIALS AND METHODS	39
3.1 Introduction	39
3.2 Solar Data	39
3.3 Sizing of the Solar System	40
3.4 Electrical System Design Calculations	40
3.4.1 Inverter Design and Specifications	40
3.4.2 Battery Design and Specifications	42
3.4.3 Daily energy demand	44
3.4.4 Average peak-power; Ppp	44
3.4.5 Number of PV modules	44
3.4.6 Charge Controller Design and Specifications	45
3.5 Block Diagram of the System	46
3.6 Mechanical Materials Selection and Design	46
3.6.1 Aluminium Composite Panels	46
3.6.2 Steel Bars	46
3.6.3 Roofing Sheets	47
3.7 Load Calculation	47
3.8 Model of the Cubicle	47

CHAPTER FOUR: RESULTS AND DISCUSSION	
4.1 Introduction	49
4.2 Climate Data	49
4.3 System Performance Evaluation	50
4.3.1 Daily Average Temperature	50
4.3.2 Monthly Average Temperature	51
4.3.3 Monthly Energy Output	52
4.3.4 Battery Performance	53
4.3.5 Monthly Energy Output Using Tracking Systems	54
4.3.6 Monthly Irradiation Using Tracking Systems	55
4.3.7 Daily Irradiance Data	56
4.3.8 Monthly Irradiation Data	62
4.4 Economic Viability	65
4.4.1 Cost of Conventional Charging Solutions	65
4.4.2 Cost of a Solar Charging Station	66
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION	69
5.1 Conclusion	69
5.2 Contributions to Knowledge	69
5.3 Recommendations	69

REFERENCES

TABLES LIST OF TABLES PAGES Table 1.1: Comparison of Nigeria with other countries based on World Bank development metrics (Ugwoke, Gershon, Becchio, Corgnati, & Leone, 2020) 3 4 Table 1.2: Available renewable energy sources in Nigeria (Aliyu, Modu, & Tan, 2018) Table 2.1: Table showing the physical properties of carbon materials (Lee, 2018; Ma, Siddiqui, 30 Marom, & Kim, 2010) Table 3.1: Sizing of the solar system 41 Table 3.2: Inverter Specifications 42 Table 3.3: Battery Specifications 43 Table 3.4: PV Panel Specification 45 Table 3.5: Charge Controller Specifications 45 Table 3.6: Cubicle load profile 47 Table 4.1: Climate Data for the site location 49 Table 4.2: Daily average temperature for the months of March and August 50 Table 4.3: Average monthly temperature in Ota, Nigeria 51 52 Table 4.4: Monthly average energy production Table 4.5: Battery charge state at the end of the day 53 Table 4.6: Average monthly energy output for various axis types 54 Table 4.7: Monthly In-plane irradiation using tracking system 55 Table 4.8: Irradiance values on a fixed plane for March 57 Table 4.9: Irradiance values on a sun-tracking plane for March 59 Table 4.10: Daily irradiance values on a fixed plane for August 60 Table 4.11: Daily irradiance values on a sun-tracking plane for August 62 Table 4.12: Monthly irradiation data for 2022 63 Table 4.13: Diffuse/global irradiation ratio 64 Table 4.14: Cost of setting up a conventional charging station 65 Table 4.15: Profit made from a conventional charging station 66 Table 4.16: Cost of setting up an off-grid solar charging station 67 Table 4.17: Profit made from a conventional charging station 67

LIST OF TABLES

LIST OF FIGURES

FIGURE	LIST OF FIGURES P	PAGES
Figure 2.1:	The n-type and p-type layers of a photovoltaic cell (Luceño-Sánchez et a	al., 2019)
		9
Figure 2.2:	Best research cell efficiencies (National Renewable Energy Laboratory,	
	NREL,2021)	9
Figure 2.3:	Schematic representation of a dye sensitized solar cell (Gong et al., 2012	2) 15
Figure 2.4:	Absorption spectra of CdSe QDs with different diameters (Tian & Cao, 2	2013)
		18
Figure 2.5:	Representation of a typical and inverted polymer solar cell (Díez-Pascua	l et al.,
	2018)	20
Figure 2.6:	Schematic representation of a single and a hetero junction solar cell (Kau	ur, Singh,
	Pathak, Wagner, & Nunzi, 2014)	21
Figure 2.7:	Structure of a Perovskite (A)- Monovalent cations, (B)- Lead, (C)- Iodin	e
	(Marinova et al., 2017)	22
Figure 2.8:	Efficiency of multi-junction solar cells in relation to their number of junc	ctions
	(Philipps & Bett, 2014)	24
Figure 2.9:	Honeycomb configurations of carbon atoms as OD-fullerene, 1D- carbon	n
	nanotubes and 3D-graphite (Geim & Novoselov, 2009)	26
Figure 2.10): Schematic of a solar cell (Guerra et al., 2018)	34
Figure 2.11	1: Single band-gap solar cell and an up converter (Goldschmidt, 2010)	36
Figure 2.12	2: Multiple exciton generation in a quantum dot solar cell (Akinoglu et al.	, 2021)
		38
Figure 2.13	3: The three mechanisms of hot carrier extraction and the optical method of	of hot
	carrier generations (Saeed et al., 2014)	39
Figure 3.1:	Chart showing average daily global irradiance of Nigeria (Osinowo, Oko	ogbue,
	Ogungbenro, & Fashanu, 2015)	40
Figure 3.2:	Solar Inverter	42
Figure 3.3:	Battery	44
Figure 3.4:	A solar charge controller	45
Figure 3.5:	Block diagram of the PV system	46
Figure 3.6:	Floor Plan of the Cubicle	48
Figure 3.7:	3D Model of the solar charging cubicle	48
Figure 4.1:	Daily average temperature for March and August 2022	51

52
53
54
55
56
58
59
61
62
64
65

LIST OF EQUATIONS

$PI=\sum$ wattage + 25% extra power <u>Equation 3.1</u>	41
$PF = real power output \div power rating of the inverter Equation 3.2$	41
$P_{KVA} = P_I \div Power factor Equation 3.3$	42
Charging current = $(1/10 \text{ of batteries Ah})$ Equation 3.4	43
Edd = Ed / ($\eta b \eta I \eta c$) Equation 3.5	44
Ppp = Edd / Average sun hour for Ogun State Equation 3.6	44
Np = Average peak power / Module power <u>Equation 3.7</u>	44

ABBRIEVATIONS, SYMBOLS AND NOMENCLATURE

	, ,
AC	Alternating Current
BC-BJ	Back Contact Back Junction
BHJ	Bulk Heterojunction
CB	Conduction Band
CNT	Carbon nanotube
CVD	Chemical Vapour Deposition
D-A	Donor Acceptor
DC	Direct Current
D-D	Drift Diffusion
DISCOs	Distribution Companies
DSSCs	Dye Sensitized Solar Cells
EA	Electron Affinity
ESMAP	Energy Sector Management Assistance Program
ESPRA	Electric Power Sector Reform Act
ETL	Electron Transport Layer
FMP	Federal Ministry of Power
FMPS	Federal Ministry of Power and Steel
GaAs	Gallium Arsenide
GDP	Gross Domestic Product
GQDs	Graphene Quantum Dots
GW	Gigawatt
HOMER	Hybrid Optimization of Multiple Energy Resources
HTL	Hole Transport Layer
HQs	Headquarters
IBC	Integrated Back Contact
IP	Ionization Potential
KW	Kilowatt(s)
LGA	Local Government Area
LPE	Liquid Phase Epitaxy
MEG	Multiple Exciton Generation
MJ	Multijunction
MOCVD	Metal Organic Chemical Vapour Deposition
MW	Megawatt(s)

MWh	Megawatt-Hour
MWNCTs	Multi-walled Carbon Nanotubes
NEPP	National Electric Power Policy
NERC	National Electricity Regulatory Commission
NNPC	Nigeria National Petroleum Corporation
NREL	National Renewable Energy Laboratory
OMVPE	Organometallic Vapour Phase Epitaxy
OPVCs	Organic Photovoltaic Cells
PSCs	Polymer Solar Cells
PV	Photovoltaic
PVC	Photovoltaic Cells
QDs	Quantum Dots
QDSSCs	Quantum Dot-Sensitized Solar Cells
QE	Quantum Efficiency
REA	Rural Electrification Agency
REF	Rural Electrification Fund
REP	Rural Electrification Policy
RESIP	Rural Electrification Strategy and Implementation Plan
SDG	Sustainable Development Goal
SQ	Shockley Queisser
SWCNTs	Single-walled Carbon Nanotubes
TCEs	Transparent Conductive Electrodes
TCO	Transparent Conductive Oxides
UC	Up Conversion
UN	United Nations
UV	Ultraviolet
VB	Valence Band
VPE	Vapour Phase Epitaxy
W	Watt(s)
Ah	Ampere hour
a-Si	Aluminium Silicon
CdS	Cadmium Sulfide
CdTe	Cadmium Telluride
CdSe	Cadmium Selenide

CIGS	Copper Indium Gallium Selenide
c-Si	Crystalline Silicon
eV	Electron Voltage
FTO	Fluorine Doped Tin Oxide
G	Graphene
GO	Graphene Oxide
GPa	Gigapascal
Hz	Hertz
ITO	Indium Doped Tin Oxide
m	metre
m-Si	Monocrystalline Silicon
nm	Nanometre
P3HT	Poly(3-hexylthiophene)
PANI	Polyaniline
PEDOT: PSS	Poly(3,4-ethylenedioxythiophene)-Poly (styrene sulfonate)
PEN	Polyethylene Naphthalate
PET	Polyethylene Terephthalate
PPP	Poly(p-phenylene)
PPV	Poly (phenylene vinylene)
PPy	Polypyrrole
p-Si	Polycrystalline Silicon
PTFE	Polytetrafluoroethylene
scf	Standard Cubic Feet
TiO	Titanium dioxide
ZnO	Zinc Oxide
η	Efficiency
2D	2-Dimensional

ABSTRACT

At the core of the growth and development of any Nation is the availability of energy for driving the other spheres of the economy. Unfortunately, while the world is moving towards new trends in providing clean and affordable energy, many underdeveloped, and developing countries are still stuck with the challenge of inadequate exploration, and utilization of conventional energy sources, and this has kept these nations backwards as compared to the developed world. This study addresses a sustainable solution, which can serve as a framework for addressing the challenge of clean and affordable energy availability for meeting basic needs in Nigeria. Of particular interest among the various renewable energy sources is solar energy which is an abundant renewable energy source in Nigeria. This study discusses the current state of energy generation, transmission, and distribution in Nigeria, and also provides an insight into Nigeria's renewable energy potential with a focus on solar energy. The various photovoltaic technologies were also discussed, and the future of solar energy exploration too. A detailed design of solar energy charging station geared at meeting basic electricity need of people living in rural areas was presented, and the performance of this system was evaluated using the European Commission PV-GIS simulation software, and data obtained from NASA's database. The results showed that the system is a viable one both technically, and economically to meeting the basic electrical demand of rural dwellers and can be adopted on a larger scale by the Government. Recommendations were also made on how this work can be further advanced.

Keywords: Solar Energy, Energy, Solar Cells, Rural, Photovoltaics, Conventional.