EFFECT OF MAIZE HUSK REINFORCEMENT ON THE MECHANICAL PROPERTIES OF 1170 ALUMINIUM

WILLIAMS, JOSEPH AJUWAEZE (20PCM02103)

JUNE 2022

EFFECT OF MAIZE HUSK REINFORCEMENT ON THE MECHANICAL PROPERTIES OF 1170 ALUMINIUM

BY

WILLIAMS, JOSEPH AJUWAEZE. (20PCM02103) B.Eng. Mechanical Engineering, Adeleke University, Ede.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIESOF COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA IN PARTIALFULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER IN ENGINEERING (M.Eng) DEGREE IN MECHANICAL ENGINEERING, IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA.

JUNE 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master in Mechanical Engineering in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, WILLIAMS, JOSEPH AJUWAEZE (20PCM02103) declare that this research work titled "EFFECT OF MAIZE HUSK REINFORCEMENT ON THE MECHANICAL PROPERTIES OF 1170 ALUMINIUM" was carried out by me under the supervision of Prof. Roland Tolulope Loto of the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere, and the results of this research were obtained by tests carried out in the laboratory. All sources of data and scholarly information used in this dissertation are duly acknowledged.

WILLIAM, JOSEPH AJUWAEZE

Signature and Date

v

CERTIFICATION

We certify that this dissertation titled "EFFECT OF MAIZE HUSK REINFORCEMENT ON THE MECHANICAL PROPERTIES OF 1170 ALUMINIUM" is an original research work carried out by WILLIAMS, JOSEPH AJUWAEZE (20PCM02103) in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Roland Tolulope Loto. We have examined and found this work acceptable as part of the requirements for the award of a Master's (M.Eng) degree in Mechanical Engineering.

Prof. Roland Tolulope Loto (Supervisor)

Prof. Okeniyi Joshua (Head of Department)

Prof. Chigbo A. Mgbemene (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this research work first to The Almighty God, my Everlasting Father, creator, and source of my strength, inspiration and knowledge. My parents, Mr. Francis Ajuwaeze Williams & Mrs. Ruth Emilomo Williams, and my siblings for their continuous prayers, love, support, and encouragement towards my work. Also, to my lecturers and instructors, friends, and colleagues of the Department of Mechanical Engineering, Covenant University who were instrumental in ensuring that this work was a success. Thank you, and God bless you all immensely.

ACKNOWLEDGMENT

First and foremost, my profound gratitude goes to our Father in heaven for His preservation over my life, His blessing upon me each day, and the provision of all that was required to complete this dissertation. To him alone be all the glory now and forever. I express my appreciation to my parents, Mr Francis Ajuwaeze Williams & Mrs. Ruth Emilomo Williams for their love, sacrifice and prayers. I gratefully appreciate my supervisor, Prof. Roland Tolulope Loto, for his guidance and patience throughout this research project in ensuring its timely completion and to Dr. Philip Babalola for his input.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, a father and teacher whose words have always been a constant reminder that anything is possible and achievable. Thank you very much sir, your labour of love will not be in vain and may your legacy outlive you. Also, to the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, thank you sirs and God bless you. My appreciation also goes to the Head of the Department of Mechanical Engineering, Prof. Joshua O. Okeniyi, and the Post Graduate Coordinator, Department of Mechanical Engineering, Dr F. Joseph, for their input and encouragement towards the successful completion of this dissertation.

I would also like to appreciate some members of the Faculty and Staff of the Department of Mechanical Engineering such as Prof. Ajayi, Prof. Oyedepo, Dr. Enesi, Dr. Dirisu, Engr. Adeoye, Mr. John Morounfolu, Mr. Segun and every other Staff and Faculty in the Department of Mechanical Engineering for their warm reception and encouragement throughout the course of my programme.

Also, to Ilesanmi Bello, Yinka, Daniel Ayoola, Michael Aluko, Marvelous Akomolafe, Ogechi Nnamba, ThankGod Oghenevwegba, and Engr. Fisayo, members of the class of 2020/2021 MEng. Mechanical Engineering, I say thank you for your support and being the best colleagues, anyone could ask for. To my friend turned brother, Musa Dauda, I say thank you for your guidance and assistance always

I want to also thank my siblings (Chukwuemeke, Onyekachukwu, David & Emmanuel), and my friends (Joseph, Toyin, Young, Fejiro, Jessa, Joy Ogbe, Honey, Esther Ayomide, Faith), and the others which I in no way take for granted, and well-wishers for their motivation and support throughout the course of my study at Covenant University. God bless you all.

TABLE OF CONTENTS

CONTENTS	PAGES
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
ACKNOWLEDGMENT	vi vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF PLATES	XİV
ABBREVIATIONS. SYMBOLS AND NOMENCLATURE	xvi
ABSTRACT	xviii
CHAPTER 1: INTRODUCTION	1
1.1 Background of the study	1
1.1.1 Composites	2
1.1.2 Ceramics	2
1.1.3 Plastics and polymers	3
1.1.4 Metals & Alloys	3
1.1.5 Corrosion in materials	7
1.2 Research problem	8
1.3 Aim of study	9
1.4 Study objectives	9
1.5 Significance of study	9
1.6 Scope of study	10
1.7 Justification for the study	10
CHAPTER 2: LITERATURE REVIEW	11
2.1 Material innovation	11
2.2 Metals	12
2.2.1 Ferrous metals	16

2.2.2 Non-Ferrous metals	17
2.2.3 Aluminium alloys	18
2.3 Composites	21
2.4 Reinforcement	24
2.4.1 Conventional reinforcement materials	25
2.4.2 Unconventional reinforcement materials	26
2.4.3 Green Additives	29
2.4.4 Natural Fibres	31
2.4.5 Maize husk	32
2.5 Stir casting	32
2.6 Aluminium matrix composites	33
2.7 Characterization of aluminium matrix composites	34
2.8 Corrosion in aluminium matrix composites	37
2.8.1 Economic impact of corrosion in aluminium metal matrix composites	40
2.9 Types of corrosion	41
2.9.1 Uniform Corrosion	41
2.9.2 Galvanic Corrosion	42
2.9.3 Pitting Corrosion	43
2.9.4 Crevice Corrosion	44
2.9.5 Intergranular Corrosion	46
2.9.6 Erosion Corrosion	47
2.9.7 Stress Corrosion	48
2.9.8 Corrosion Prevention Techniques	50
2.9.9 Corrosion Monitoring Techniques	53
CHAPTER 3: MATERIALS AND METHODS	58
3.1 Materials	58
3.2 Equipment	59
3.3 Methodology	60
3.3.1 Acquisition and preparation of 1170Al alloy	60
3.3.2 Acquisition and preparation of maize husk particulate	60

3.3.3 Preparation of composite material	61
3.4 Tensile test	65
3.5 Micro hardness test	66
3.6 Scanning electron microscopy (SEM)	68
3.7 Corrosion test	68
3.7.1 Specimen Preparation	68
3.7.2 Solution preparation	68
3.7.3 Weight loss	69
3.7.4 Potentiodynamic polarization	71
3.7.5 Open circuit potential (OCP) measurement and Optical microscopy characterization	72
3.8 Thermal conductivity and resistivity	72
CHAPTER 4: RESULTS AND DISCUSSION	74
4.1 Mechanical tests	74
4.1.1 Tensile Test	74
4.1.2 Hardness Test	77
4.1.3 Thermal Conductivity	79
4.2 Corrosion tests	81
4.2.1 Weight loss	81
4.2.2 Potentiodynamic polarization	91
4.2.3 Open Circuit potential (O.C.P)	97
4.2.4 Optical microscopy and X-ray fluorescence analysis	101
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	107
5.1 Summary	107
5.2 Conclusion	107
5.3 Contribution to knowledge	108
5.4 Recommendation	108
REFERENCES	109

LIST OF TABLES

TABLES	LIST OF TABLES P	AGES
Table 2. 1: Agro-waste materials use	ed as reinforcement	26
Table 3. 1: Composition of aluminiu	m alloy 1170 (Inegbenebor et al., 2016)	58
Table 3. 2: Maize husk Composition	(Raphael et al., 2019)	59
Table 3. 3: Sieve analysis data		61
Table 3. 4: Percentage Constituents	of Specimens	62
Table 4. 1: Specimen behaviour at m	aximum tensile stress	76
Table 4. 2: Specimen behaviour at b	reak	76
Table 4. 3: Hardness test results for a	as cast specimens	77
Table 4. 4: Thermal conductivity tes	t results for as cast specimens	79
Table 4. 5: Weight loss of samples in	n NaCl	81
Table 4. 6: Corrosion rate of sample	s in NaCl	83
Table 4. 7: Weight loss of samples in	$H_2SO_{4.}$	84
Table 4. 8: Corrosion rate of sample	s in H ₂ SO _{4.}	86
Table 4. 9: Weight loss of samples in	n NaCl/H ₂ SO _{4.}	88
Table 4. 10: Corrosion rate of sampl	es in NaCl/H ₂ SO _{4.}	89
Table 4. 11: Potentiodynamic polariz	zation results for Al/MH _P specimens in 3.5% NaCl solution	91
Table 4. 12: Potentiodynamic polariz	zation results for Al/MH _P specimens in 0.00625M H ₂ SO ₄	93
Table 4. 13: Potentiodynamic polariz	zation results for Al/MHP specimens in NaCl/H2SO4 solution	ı 95
Table 4. 14: X-Ray fluorescence (XI	RF) analysis of selected as cast and corroded specimens	105

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 1. 1:matrix and reinforcing mate	rials employed in the manufacture of MMCs (Ramar	athan et al.,
2019).		6
Figure 2. 1: Material Innovation.		11
Figure 2. 2: Classification of materials f	or manufacture (Scallan, 2003).	13
Figure 2. 3: General material mechanica	ll and physical qualities (Scallan, 2003).	14
Figure 2. 4: Phases of Composites (Loo	s, 2015).	23
Figure 2. 5: Composite Manufacturing t	echniques (Rajak et al., 2019).	24
Figure 2. 6: Matrix and reinforcement m	naterials of MMCs (Seetharaman & Gupta, 2021).	25
Figure 2. 7: Classification of Biodegrad	able polymers (Bayer et al., 2017).	31
Figure 2. 8: (a) Mechanical & (b) Ultras	sonic Stir casting setup (Seetharaman & Gupta, 2021)	. 33
Figure 2. 9: Fabrication processes of AM	MCs (Ervina-Efzan et al., 2016)	34
Figure 2. 10: Uniform corrosion process	s of iron (Obot, 2014).	42
Figure 2. 11: Galvanic corrosion of alun	ninium (Ployhar et al., 2015).	43
Figure 2. 12: Pitting corrosion of Mg all	loys (Dehghanghadikolaei et al., 2019).	44
Figure 2. 13: Schematic diagram of the	crevice corrosion process (Shukla et al., 2011).	45
Figure 2. 14: Illustration of an intergram	ular corrosion zone and a heat-impacted zone adjace	nt to a weld
(Gale & Totemeier, 2004).		46
Figure 2. 15: intergranular corrosion (A	eroCorner, 2019).	47
Figure 2. 16: Mechanism of erosion-cor	rosion of metal (Pratikno, 2015).	48
Figure 2. 17: diagram of stress corrosion	n (Yagnik & Garde, 2019).	49
Figure 2. 18: Stress corrosion cracking	of an AISI 304 stainless-steel float from a geotherm	al hot water
storage tank (Karlsdóttir, 2012).		49
Figure 2. 19: Direct Corrosion monitorin	ng techniques	53
Figure 3. 1: The dimensions of the tensile	e specimens are as shown in compliance with the AST	M E8/E8M-
21 standard dimensions from (Skowrone	ek & Grajcar, 2020).	65
Figure 3. 2: DY2300EN software interfa	ace.	72
Figure 4. 1: Tensile Stress/Strain Curve	for Specimens 1, 2, 3, 4, 5.	76
Figure 4. 2: Hardness test		78

Figure 4. 3: Thermal Conductivity Test	80
Figure 4. 4: Graph of weight loss of the specimens in NaCl against time.	82
Figure 4. 5: Graph of corrosion rate of the specimens in NaCl against time.	83
Figure 4. 6: Graph of weight loss of the specimens in H ₂ SO ₄ against time.	85
Figure 4. 7: Graph of corrosion rate of the specimens in H ₂ SO ₄ against time.	87
Figure 4. 8: Graph of weight loss of the specimens in NaCl/H ₂ SO ₄ against time.	88
Figure 4. 9: Graph of corrosion rate of the specimens in NaCl/H ₂ SO ₄ against time.	90
Figure 4. 10: Potentiodynamic polarization plot for Al/MH _P specimens in 3.5% NaCl solution.	92
Figure 4. 11: Potentiodynamic polarization plot for Al/MH _P specimens in 0.00625M H ₂ SO ₄ soluti	on. 94
Figure 4. 12: Potentiodynamic polarization plot for Al/MH _P specimens in NaCl/H ₂ SO ₄ solution.	96
Figure 4. 13: OCP plots of 1170Al/MH _P composite in 3.5% NaCl.	98
Figure 4. 14: OCP plots of 1170Al/MH _P composite in 0.00625 M H ₂ SO ₄ .	99
Figure 4. 15: OCP plots of Al/MH _P composite in 3.5% NaCl/0.00625 M H ₂ SO ₄	100
Figure 4. 16: Micro-image of Specimen S1 surface before corrosion test (mag. x40 and x100).	101
Figure 4. 17: Micro-image of Specimen S1 surface after corrosion in (a) 3.5% NaCl (b) 0.00625 M	H_2SO_4
(c) 3.5% NaCl/0.00625 M H ₂ SO ₄	102
Figure 4. 18: Micro-image of Specimen S2 surface before corrosion test (mag. x40 and x100).	102
Figure 4. 19: Micro-image of Specimen 2 surface after corrosion in (a) 3.5% NaCl (b) 0.00625 M	H_2SO_4
(c) 3.5% NaCl/0.00625 M H ₂ SO ₄	102
Figure 4. 20: Micro-image of Specimen 3 surface before corrosion test (mag. x40 and x100).	103
Figure 4. 21: Micro-image of Specimen 3 surface after corrosion in (a) 3.5% NaCl (b) 0.00625 M	H_2SO_4
(c) 3.5% NaCl/0.00625 M H ₂ SO ₄	103
Figure 4. 22: Micro-image of Specimen 4 surface before corrosion test (mag. x40 and x100).	103
Figure 4. 23: Micro-image of Specimen 4 surface after corrosion in (a) 3.5% NaCl (b) 0.00625 M	H_2SO_4
(c) 3.5% NaCl/0.00625 M H ₂ SO ₄	104
Figure 4. 24: Micro-image of Specimen 5 surface before corrosion test (mag. x40 and x100).	104
Figure 4. 25: Micro-image of Specimen 5 surface after corrosion in (a) 3.5% NaCl (b) 0.00625 M	H_2SO_4
(c) 3.5% NaCl/0.00625 M H ₂ SO ₄	104

LIST OF PLATES

PLATES	LIST OF PLATES	PAGES
Plate 2. 1: Uniform Corrosion (Alhaboubi,	2014).	42
Plate 2. 2: Galvanic Corrosion of a steel pi	pe (Lombard, 2018).	43
Plate 2. 3: Pitting corrosion (Tait, 2018).		44
Plate 2. 4: Crevice corrosion in a flange (Iv	versen & Leffler, 2010).	45
Plate 2. 5: Erosion-corrosion of an offshor	e down hole centrifugal pump impeller (Wood, 200	7). 48
Plate 3. 1: Commercial pure aluminium 11	70A1	58
Plate 3. 2: Maize husk		59
Plate 3. 3: Maize husk particulate.		60
Plate 3. 4: Composite Casting in moulds.		62
Plate 3. 5: Specimen S1 (<i>AlMHp</i> /00µm)		63
Plate 3. 6: Specimen S2 (AlMHp/5150µm	ı).	63
Plate 3. 7: Specimen S3(AlMHp/5300µm)	64
Plate 3. 8: Specimen S4(AlMHp/15150µn	m).	64
Plate 3. 9: Specimen S5 (AlMHp/15300µ	m).	65
Plate 3. 10: Tensile Specimens		66
Plate 3. 11: Hardness specimens.		67
Plate 3. 12: Micro hardness tester		67
Plate 3. 13: Specimens immersed in the sol	lutions.	70
Plate 3. 14: Experimental setup for potentie	odynamic polarization.	71

LIST OF EQUATIONS

$V_0 = Mn/\rho P$ Equation 3. 1	68
Weight loss = initial mass (g) – final mass (g) Equation 3. 2	70
Corrosion Rate = $(87.6 \times \text{Weight Loss (g)} \times 1000\text{mg})/(\text{Metal Density (g/cm^3)} \times$	
Surface Area (cm ²) × Exposure Time (h)) Equation 3. 3	70
$C_{\rm R}$ = (0.00327 × C_d × E_q)/D Equation 3.4	71
K= 2.303MCδ[log (θ_1/θ_2)]/(A*t) Equation 3. 5	72

ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AMC	Aluminium Matrix Composite
AIW	Agro-Industrial Waste
AISI	American Iron and Steel Institute
ASTM	American Society for Testing and Materials
BHN	Brinell Hardness Number
Cd	Corrosion Current Density
C _P	Corrosion Potential
C _R	Corrosion Rate
CFRP	Carbon Fibre Reinforced Polymers
CMC	Ceramic Matrix Composites
CFA	Coal Fly Ash
CSA	Coconut Shell Ash
CMP	Coconut Shell Micro Particles
CoF	Coefficient of Friction
CNT	Carbon Nanotubes
DRAM	Dynamic Random Access Memory
ES	Egg Shell
EDS	Energy Dispersive X-ray Analysis
EIS	Electrochemical Impedance Spectroscopy
EFM	Electrochemical Frequency Modulation
E _R	Electrical Resistance
FVW	Fruits and Vegetable Waste
FE-SEM	Field Emission Scanning Electron Microscopy
FSP	Friction Stir Processing
GFRP	Glass Fibre Reinforced Polymers
GSA	Groundnut Shell Ash
GDP	Gross Domestic Product

HSS	High Strength Steel
HSLA	High Strength Low Alloy
KFRP	Kevlar Fibre Reinforced Polymers
LPR	Linear Polarization Resistance
MMC	Metal Matrix Composites
MMHC	Metal Matrix Hybrid Composite
NP	Nano Particles
OMC	Organic Matrix Composites
PMC	Polymer Matrix Composites
PKS	Palm Kernel Shell
RHA	Rice Husk Ash
SDG	Sustainable Development Goals
SEM	Scanning Electron Microscopy
ULSAB	Ultra-Light Steel Auto Body
WFA	Wood Fly Ash
Wt. %	Weight Percentage
XRD	X-ray Diffraction
XRF	X-ray Fluorescence
η	Inhibition efficiency
μ	Micron

ABSTRACT

The growing global population is increasing waste generation, and agricultural and industrial food processing waste is a major ecological risk. These wastes, improperly disposed of by uncontrolled landfill disposal, incineration, or indiscriminate dumping, constitute a threat to society. In order to decrease the environmental degradation and pollution burden of these wastes, they are being aimed toward recycling and reuse as a possible resource in fulfilling the rising need for lightweight, high-quality, highperformance, and low-cost materials for a variety of applications. The majority of the population in West Africa and Nigeria consumes maize as a staple diet, which presents an opportunity for waste generation. Apart from the seeds, the remaining parts of the maize (the cob and husk) are not commonly eaten. Recent green reinforcement research has focused on the usage of husks from rice, coconut, and even palm kernel. Thus, this study investigates the development of an Aluminium Matrix Composite (AMC) using maize husk particle (MH_P) as a reinforcement to the 1170 aluminium alloy. Stir casting is chosen as the composite fabrication process route due to its relatively low costs and efficiency. The mechanical properties of the MH_P reinforced aluminium composite are compared to those of the unreinforced metal. All specimens were mechanically characterized for tensile, hardness, thermal conductivity properties, corrosion rate, potentiodynamic polarization, and open circuit potential analysis. The tensile tests demonstrated that raising the wt.% decreased the specimen's tensile modulus whilst increasing the wt.% of finer particles of smaller grain sizes of reinforcement increased its hardness properties. Thermal conductivity improved as reinforcement wt.% increased. Compared to the control specimen, the corrosion rates determined from the weight loss investigation indicated variations in the corrosion properties of the specimens in the various solutions. The varying mix percentages influenced the properties of the specimens. It was observed that the presence, particle size and quantity of reinforcement in the matrix positively affects the corrosion behaviour of composite materials through the creation of corrosionresistant oxides.

Keywords: Material Innovation, Reinforcement, Composites, Aluminium matrix composites (AMCs), green additives, stir casting