EFFECT OF SIC-GRAPHITE REINFORCEMENT AND TEMPERATURE ON THE MECHANICAL PROPERTIES OF AA7075 ALUMINIUM ALLOY

ALUKO, OLALEKAN MICHEAL (20PCM02099)

JULY 2022

EFFECT OF SIC-GRAPHITE REINFORCEMENT AND TEMPERATURE ON THE MECHANICAL PROPERTIES OF AA7075 ALUMINIUM ALLOY

BY

ALUKO, OLALEKAN MICHEAL. (20PCM02099) B.Eng. Mechanical Engineering, University of Lagos.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES OF COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER IN ENGINEERING (M.Eng) DEGREE IN MECHANICAL ENGINEERING, IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA.

JULY 2022

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfillment of the requirements for the award of degree of Master's in Mechanical Engineering in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ALUKO OLALEKAN MICHEAL (20PCM02099) declare that this research work titled "EFFECT OF SIC-GRAPHITE REINFORCEMENT AND TEMPERATURE ON THE MECHANICAL PROPERTIES OF AA7075 ALUMINIUM ALLOY" was carried out by me under the supervision of Dr. Olufunmilayo O. Joseph of the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere, and the results of this research were obtained by tests carried out in the laboratory. All sources of data and scholarly information used in this dissertation are duly acknowledged.

ALUKO, OLALEKAN MICHEAL

Signature & Date

CERTIFICATION

We certify that the thesis titled "EFFECT OF SIC-GRAPHITE REINFORCEMENT AND **TEMPERATURE ON THE MECHANICAL PROPERTIES OF AA7075 ALUMINIUM** ALLOY" is an original research work carried out by ALUKO, OLALEKAN MICHEAL (20PCM02099) in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. Olufunmilayo O. Joseph. We have examined and found this work acceptable as part of the requirements for the award of Master (M. Eng) degree in Mechanical Engineering.

Dr. Olufunmilayo O. Joseph (Supervisor)

Prof. Joshua O. Okeniyi (Head of Department)

Prof. Chigbo A. Mgbemene (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated to God, my parents, and my siblings, for their sincere love, prayers, and unwavering support at points when the work was supposedly getting delayed.

ACKNOWLEDGEMENT

First and foremost, I am grateful to God for the gift of life, strength, and grace that has enabled me to complete this undertaking. My deepest gratitude to Dr. Olufunmilayo O. Joseph, my academic coach and mentor, who has been a sincere and thorough guardian throughout this Project.

I appreciate Mr. Joel Ugwuozor for guiding me through the technical setups of my research. My appreciation also goes to the Head of Department of Mechanical Engineering, Prof. Joshua O. Okeniyi, and Dr Enesi for his constant advice and guidance and all Staff and Faculty in the Department of Mechanical Engineering for their hospitality and encouragement throughout the journey.

My utmost regard goes to my parents, Mr. Segun Aluko and Mrs. Sola Aluko who have painstakingly laid the foundation for my education and have always ensured I get the best education there is. I am and will forever be grateful. I appreciate John Effiong and Hannah Subairu, for their motivation and words of encouragement. I also appreciate all my friends and well-wishers for the push and support. God bless you all.

TABLE OF CONTENT

CONTEN	ΊΤ	PAGES
TABLE C LIST OF LIST OF LIST OF	ATION CATION CATION FION VLEDGEMENT OF CONTENT TABLES FIGURES PLATES IATIONS, SYMBOLS AND NOMENCLATURE	iii iv v vi vii viii xii xii xiv xv
СНАРТЕ	R 1: INTRODUCTION	1
1.1	Background of the study	1
1.1.1	Composite materials	1
1.1.2	Heat treatment	2
1.2	Problem statement	3
1.3	Aim of study	3
1.4	Objective of study	3
1.5	Scope of study	4
1.6	Significance of study	4
СНАРТЕ	R 2: LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Metal matrix composites	6
2.3	Aluminium matrix composites	7
2.4	Selection of aluminium matrix alloys	8
2.5	Reinforcements in aluminium matrix composites	10
2.5.1	Particle Reinforced Aluminium Metal Matrix Composites	10
2.5.2	Continuous Fiber-Reinforced Aluminium Metal Matrix Composites	11
2.5.3	Short fibre- and whisker-reinforced aluminium matrix composites (SFA	MCs)11
2.5.4	Mono filament reinforced aluminium matrix composites (MFAMCs)	11

2.5.5	Hybrid Aluminium Metal Matrix Composites	12
2.6	Casting methods	14
2.7	Heat treatment of composite materials	15
2.7.1	Mechanical Properties of Heat-Treated Composite material	17
2.7.2	Microstructure of Heat-Treated Composite material	19
2.7.3	Corrosion Resistance of Heat-Treated Composite material	20
2.8	A review of literature on aluminium composite in industries	22
2.9	Review of literature on casting methods	26
2.9.1	Extracts from Various Casting Approach	28
2.10	Review of literature on heat treatment of AMMC	30
2.11	Further review of some specific particulates for reinforcement of AMMC	32
2.11.1	SiC for Aluminium Matrix Reinforcement	32
2.11.2	AL MMC Reinforcement Using Graphite	33
2.11.3	AL MMC Reinforcement Using Graphite and Silicon Carbide Particulate	34
	The finite reminitement esting or upinte and smooth curbine randoude	54
	R 3: MATERIALS AND METHODS	36
СНАРТЕ	R 3: MATERIALS AND METHODS	36
CHAPTE 3.1	R 3: MATERIALS AND METHODS Introduction	36 36
CHAPTE 3.1 3.2	R 3: MATERIALS AND METHODS Introduction Materials	36 36 36
CHAPTE 3.1 3.2 3.2.1	R 3: MATERIALS AND METHODS Introduction Materials Aluminium	36 36 36
CHAPTE 3.1 3.2 3.2.1 3.2.2	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates	36 36 36 36
CHAPTE 3.1 3.2 3.2.1 3.2.2 3.3	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates Methods	36 36 36 36 36 36
CHAPTE 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates Methods Procurement of Materials	36 36 36 36 36 36 37
CHAPTE 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates Methods Procurement of Materials Materials Preparation	36 36 36 36 36 36 37 37
CHAPTE 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.3.3	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates Methods Procurement of Materials Materials Preparation To Get the Mass of The Die Mould	36 36 36 36 36 37 37 40
CHAPTE 3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.3.2 3.3.3 3.3.4	R 3: MATERIALS AND METHODS Introduction Materials Aluminium Particulates Methods Introduction Procurement of Materials Materials Preparation To Get the Mass of The Die Mould Methodology	36 36 36 36 36 36 37 37 40 41

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Hardness Test	49
4.2	Impact test	51
4.3	Tensile Test	53
4.3.1	Ultimate tensile test	53
4.3.2	Yield strength results	55
4.4	Stress strain curve	57
4.5	Morphological examination	61
4.5.1	90% Aluminium 5% Silicon carbide 5% Graphite:	61
4.5.2	85% Aluminium 10% Silicon carbide 5% Graphite	62
4.5.3	100%Aluminium	64
4.6 Wei	ight Loss Corrosion test	65
4.6.1	Corrosion Rate in an HCl solution	66
4.6.2	Corrosion Rate in an NaCl solution	69
4.6.3	Potentiodynamic Polarization corrosion test:	71
СНАРТЕ	R 5: CONCLUSION AND RECOMMENDATION	84
5.1	Summary	84
5.2	Conclusion	84
5.3	Contribution to knowledge	84
5.4	Recommendation	85
REFERE	NCES	86

49

х

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 2.1 Table showing the various	s series and their strengthening methods	9
Table 2.2 Matrix Reinforcement, pro	operties, and processes	12
Table 2.3 List of the various availab	le methods/techniques used in MMCs manufacturin	g 28
Table 2.4 List of authors and their c	ontributions to knowledge	28
Table 3.1 Chemical Composition of	AA7075	38
Table 3.2 Chemical Composition of	Silicon Carbid	39
Table 3.3 Chemical Composition of	Graphite	40
Table 3.4 Charge calculation for we	ighted percentages of reinforcement	41
Table 3. 5 List of Equipment used for	or this experiment	44
Table 4.1 Hardness test results		50
Table 4.2 Statistical analysis of hard	ness test results	51
Table 4.3 Impact test result		51
Table 4.4 Table showing the statistic	cal analysis of the impact test result	52
Table 4.5 Ultimate tensile test result	s	53
Table 4.6 Statistical analysis of tens	ile test results	55
Table 4.7 Yield strength results		55
Table 4.8 statistical analysis of yield	l strength results	56
Table 4. 13 Corrosion rate of 5% SiC	C Reinforcement for 240 Hours in HCl	66
Table 4.14 Corrosion rate of 10% Sid	C Reinforcement for 240 Hours in HCl	67
Table 4. 15 Corrosion rate of Alumi	nium AA7075 for 240 Hours in HCl	68
Table 4.16 Corrosion rate of 5%SiC	Reinforcement for 240 Hours in NaCl	69
Table 4. 17 Corrosion rate of 10%Si	C Reinforcement for 240 Hours in NaCl	70
Table 4. 18 Corrosion rate of Alumi	nium AA7075 for 240 Hours in NaCl	71
Table 4.19 Results in HCL solution		71
Table 4.20 Tafel results in NACL so	olution	73

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 2. 1: Schematic diagram sho	wing the different types of metal matrix composite a	and
reinforcement types (Gohil et al., 20	018)	12
Figure 2.2: A diagram showing a sc	hematic view of stir casting (Pradesh, 2018)	15
Figure 2.3:The Effect of heat treatm	nent on ultimate tensile strength of heat treated AL6	061
alloy and composites. (Naveed et al	., 2015)	19
Figure 2.4 The microstructures of A	al5Si1Cu0.5Mg matrix alloy and composite after her	at
treatment at 520 °C for different soa	aking time (Li et al., 2019)	20
Figure 3. 1 Flow Chart Showing the	e experimental procedure adopted for this study	37
Figure 3.2 Stir Casting Setup		42
Figure 3. 3 Schematic Diagram of T	Censile Test Sample	45
Figure 3.4 DY2300EN software inte	erface	49
Figure 4.1 Bar chat of hardness acro	oss tempering temperature	50
Figure 4.2 Barchat showing impact	strength against tempeting temperature	52
Figure 4.3 Bar chart showing the ul	timate tensile strength against tempering temperatur	e 54
Figure 4.4 Bar chart showing the yi	eld strength against tempering temperatures	56
Figure 4.5 Stress strain curve (a) of	90% A1,5% Graphite, 5% SiC temp 30°c (b)	
85%Al,5%Graphite, 10%SiC temp	30°c (c) 100% Al temp 30°c	57
Figure 4.6 Stress strain curve of (a)	90% A1,5% Graphite, 5% SiC 150°c tempering (b)	
85%Al,5%Graphite, 10%SiC 150°c	tempering (c) 100% Al 150°c tempering	58
Figure 4.7 Stress strain curve of (a)	90% Al,5% Graphite, 5% SiC 200°c tempering (b)	
85% Al,5% Graphite, 10% SiC 200°c	tempering (c) 100% Al 200°c tempering	59
Figure 4.8 Stress strain curve of (a)	90% Al,5% Graphite, 5% SiC 250°c tempering (b)	
85% Al,5% Graphite, 10% SiC 250°c	tempering (c) 100% Al 250°c tempering	59
Figure 4.9 Stress strain curve of (a)	90% Al,5% Graphite, 5% SiC 300°c tempering (b)	
85% Al,5% Graphite, 10% SiC 300°c	tempering (c) 100% Al 300°c tempering	60
Figure 4.10 Stress strain curve of (a) 90% Al,5% Graphite, 5% SiC 350°c tempering (b)	
85% Al,5% Graphite, 10% SiC 350°c	tempering (c) 100% Al 350°c tempering	60
Figure 4.11 (a) 90% Al,5% Graphite	,5%SiC no tempering (b) 90%Al,5%Graphite,5%Si	С
,10%SiC temp 150°c (c) 90%Al,5%	Graphite,5%SiC temp 200°c	61
Figure 4.12 (d) 90% Al,5% Graphite	,5%SiC 250°c tempering (e) 90%Al,5%Graphite,5%	SiC
.300°c tempering (f) 90% A1,5% Gra	phite,5%SiC .350°c tempering	62

Figure 4.13 Microstructure of (a) 85% Al,5% Graphite,10% SiC .no tempering (b)	
85% Al,5% Graphite, 10% SiC.150°c tempering (c) 85% Al,5% Graphite, 10% SiC. 200°c	
tempering	63
Figure 4.14 Microstructure of (d) 85% Al,5% Graphite, 10% SiC .250°c tempering (e)	
85% Al,5% Graphite, 10% SiC.300°c tempering (f) 85% Al,5% Graphite,10% SiC. 350°c	
tempering	63
Figure 4.15 Microstructure of (a) 100% Al .no tempering (b) 100% Al .150°c tempering	(c)
100% Al. 200°c tempering	
Figure 4.16Microstructure of (d) 100% Al .250°c tempering (e) 100% Al .300°c temperin	ıg (f)
100% Al. 350°c tempering	65
Figure 4.17 Plot of Corrosion rate against Time for 5% SiC Reinforcement in HCl	66
Figure 4.18 Plot of Corrosion rate against Time for 10%SiC Reinforcement in HCl	67
Figure 4.19 Plot of Corrosion rate against Time for AA7075 Alloy in HCl	68
Figure 4. 20 Plot of Corrosion rate against Time for 5% SiC Reinforcement in NaCl	69
Figure 4.21 Plot of Corrosion rate against Time for 10%SiC Reinforcement in NaCl	70
Figure 4.22 Plot of Corrosion rate against Time for AA7075 Alloy in NaCl	71
Figure 4.23 LSV plot 5% SiC. In HCl solution	76
Figure 4.24 LSV plot for 10%SiC. In HCl solution	76
Figure 4.25 LSV plot for 100% Aluminium. In HCl solution	77
Figure 4.26 LSV plot for 5% SiC in NaCl solution	77
Figure 4.27 LSV plot for 10% SiC in NaCl solution	78
Figure 4.28 LSV plot for 100% Aluminium. In NaCl solution	78
Figure 4.29 OCP plot for 5%SiC. In HCl solution	79
Figure 4.30 OCP plot for 10% SiC. In HCl solution	80
Figure 4.31 OCP plot for 100% Aluminium. In HCl solution	80
Figure 4.32 OCP plot for 5% SiC in NaCl solution	81
Figure 4.33 OCP plot for 10% SiC in NaCl solution	81
Figure 4.34 OCP plot for 100% Aluminium. In NaCl solution	82

LIST OF PLATES

PLATES	LIST OF PLATES	PAGES
Plate 3.1 Aluminium bar alloy 7075		38
Plate 3.2 Silicon carbide		39
Plate 3.3 Graphite in powder form		40
Plate 3.4 Mould and sample setup		41
Plate 3.5 Ingot of the developed com	posite	42
Plate 3.6 The machined samples		43
Plate 3.7 Tensile test machine		45
Plate 3.8 Hardness test machine		45
Plate 3.9 Impact test machine		46
Plate 3.10 Optical microscope		47
Plate 3.11 Setup for weight loss test		48
Plate 3.12 Setup for potentiodynamic	c polarization	48

ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ASTM	American Society for Testing and Materials
CCCs	Carbon-Carbon Composites
CMCs	Ceramic Matrix Composites
EC	Electrical Conductivity
EU	European Union
EDX	Energy-Dispersive X-Ray Spectroscopy
FRCs	Fibre-Reinforced Composites
MMCs	Metal Matrix Composites Nm -
NF	Nanofiltration
NP	Nanoparticle
NPs	Nanoparticles
FRCs	Fibre-Reinforced Composites
pН	Potential Hydrogen
PAC	Powder Activated Carbon
PMCs	Polymer Matrix Composites
PPM	Parts Per Million
PRCs	Particle-Reinforced Composites
SI	International System Units
SEM	Scanning Electron Microscopy
AMC	Aluminium Matrix Composite
ALMMC	Aluminium Metal Matrix Composites
SiC	Silicon Carbide
UTS	Ultimate Tensile Strength
OCP	Open Circuit Potential
LSV	Linear Sweep Voltammetry
XRD	X-ray Diffraction
XRF	X-ray Fluorescence
RHTM	Rockwell Hardness Testing Machine
STEM	Scanning Transmission Electron Microscopy
UITM	Universal Impact Testing Machine

ABSTRACT

Most engineering applications benefit greatly from the usage of aluminum composite materials, particularly due to their excellent weight to strength ratio. The mechanical properties of metals like aluminum are said to be the basic prerequisites for their application, this implies that each metal or alloy's industrial and scientific application is governed by its properties. Owing to this important requirement Some aluminum materials have been discovered to be lacking in particular areas as a result of flaws such poor ductility, weak strength, poor thermal conductivity, and difficult to machine. Silicon carbide and graphite were reinforcements on aluminum alloy 7075 using weight percentages of 5 wt and 10 wt. of Sic and graphite constant. Based on its availability, the stir casting process was chosen for the investigation. Twelve distinct samples of the developed composite materials were tempered at five different temperatures from 150°C to 350°C for the reinforced samples, and at the same tempering temperatures for six control samples of the aluminum alloy base material to serve as control. Tensile strength, hardness, toughness, corrosion resistance, and microstructural analyses were all determined from the samples. The results show that the sample with 5 weight percent silicon carbide reinforcement had a fine microstructure and showed the most noticeable improvements in mechanical. It was also observed that as tempering temperature increased, hardness and toughness improved in all reinforced samples. The study has demonstrated the importance of synthetic materials and heat treatment for aluminium composites.

Keywords: Composite, Aluminium, Silicon carbide, Graphite