AN ARGMAX ONE-VS-ALL APPROACH FOR MULTI-CLASS ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

OWOKA, EMMANUEL OLUSOLA (20PCG02184)

AN ARGMAX ONE-VS-ALL APPROACH FOR MULTI-CLASS ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM

 \mathbf{BY}

OWOKA, EMMANUEL OLUSOLA (20PCG02184) B.Sc Computer Science, University of Benin, Benin-City

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN MANAGEMENT INFORMATION SYSTEMS IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY.

AUGUST, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of MASTER of Sciences in Management Information Systems in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OWOKA, EMMANUEL OLUSOLA (20PCG02184), declare that this research was carried out by me under the supervision of Dr. Aderonke A. Oni of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

OWOKA, EMMANUEL OLUSOLA

Signature and Date

CERTIFICATION

We certify that this dissertation titled "AN ARGMAX ONE-VS-ALL APPROACH FOR MULTI-CLASS ANOMALY-BASED NETWORK INTRUSION DETECTION SYSTEM" is an original research work carried out by OWOKA, EMMANUEL OLUSOLA (20PCG02184) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria under the supervision of Dr. Aderonke A. Oni. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Management Information Systems.

Dr. Aderonke A. Oni (Supervisor)

Signature and Date

Prof. Olufunke O. Oladipupo (Head of Department)

Signature and Date

Prof. Olufunke R. Vincent (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

I dedicate this work to the Almighty God, for His infinite wisdom, grace, and love over my life. Also, this work is dedicated to my loving parents who have both worked exceptionally hard to set me up for success.

ACKNOWLEDGEMENTS

I appreciate God almighty for the strength, grace, wisdom and understanding to execute this study. Many thanks to the head of department, Prof. Olufunke Oladipupo, and the entire members of the faculty for this opportunity. I appreciate my supervisor, Dr. Aderonke Oni for her guidance, support, and encouragement. I also appreciate my family, friends and colleagues for their help and support.

TABLE OF CONTENTS

CON	TENTS		PAGES
cov	ER PAGI	E	i
TITI	LE PAGE		ii
ACC	EPTANC	E	iii
DEC	LARATIO	ON	iv
CER	TIFICAT	TION	v
DED	ICATION	7	vi
ACK	NOWLE	DGEMENTS	vii
TAB	LE OF C	ONTENTS	viii
LIST	OF FIGU	URES	X
LIST	OF TAB	LES	xiii
LIST	OF ABB	REVIATIONS	XV
ABS'	TRACT		xviii
СНА	PTER ON	NE: INTRODUCTION	1
1.1	Backgr	round to the Study	1
1.2	Stateme	ent of the Problem	4
1.3	Aim an	nd Objectives of the Study	4
1.4	Signific	cance of the Study	5
1.5	Scope of	of the Study	5
1.6	Organi	zation of the Study	5
СНА	PTER TV	VO: LITERATURE REVIEW	6
2.1	Introdu	action	6
2.2	Concep	otual Review	6
	2.2.1	Anomaly Detection	6
	2.2.2	Machine Learning	9
	2.2.3	Imbalanced Dataset	24
	2.2.4	Cybersecurity	25
	2.2.5	Intrusion Detection System	29
2.3	Methodological Review		31
	2.3.1	Machine Learning Approach	31
	2.3.2	Deep Learning Approach	32
	2.3.3	Ensemble Learning Approach	34
	2.3.4	Existing Model	36
2.4	Related	l Works	37

CHA	PTER TH	IREE: METHODOLOGY	43
3.1	Introdu	ction	43
3.2	Propose	ed Model	45
3.3	Data Co	ollection	46
3.4	Data Pr	re-processing	48
3.5	Feature	Selection	49
3.6	Modell	ing	50
3.7	Evaluat	tion	53
3.8	Develo	pment Environment	55
СНА	PTER FO	OUR: RESULTS AND DISCUSSION	58
4.1	Introdu	ction	58
4.2	Data Co	ollection and Pre-processing	58
4.3	Modell	ing	61
	4.3.1	Models Without Feature Selection	64
	4.3.2	Models with Feature Selection	71
	4.3.3	Models with Feature Selection and Balancing Technique	80
	4.3.4	Other Models implemented	88
	4.3.5	Proposed Model	90
	4.3.6	Unknown Attack Evaluation	92
4.4	Summa	ary of Results	93
4.5	Discuss	sion of Findings	98
СНА	PTER FI	VE: SUMMARY, CONCLUSION AND RECOMMENDATIONS	101
5.1	Summa	ary	101
5.2	Conclu	sion	101
5.3	Contrib	outions to knowledge	102
5.4	Recom	mendations	102
5.5	Limitat	ions to Study	102
REFI	ERENCE	S	103

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
2.1	The relationship between AI, ML, NN, and DL	10
2.2	A standard machine learning pipeline	11
2.3	Structure of a confusion matrix	19
2.4	The five functions of the NIST cybersecurity framework	
	version 1.1	28
2.5	Intrusion detection system overview	30
2.6	A diagram of a host-based IDS in a network.	30
2.7	A diagram of a network-based IDS in a network	30
2.8	Existing model architecture	36
3.1	The process flow	44
3.2	Proposed model architecture	45
3.3	Architecture of a feed-forward neural network	50
4.1	Class distribution of the pre-processed CICIDS2018 dataset	60
4.2	Correlation heatmap of the cicids2018 dataset	61
4.3	Loss curve of the 128-64-32-16 architecture on the CICIDS2018	
	dataset	62
4.4	Classification report of the 128-64-32-16 architecture on the	
	CICIDS2018 dataset	62
4.5	Loss curve of the 256-128-64-32-16 architecture on the	
	CICIDS2018 dataset	63
4.6	Classification report of the 256-128-64-32-16 architecture on the CICIDS2018 dataset	63
4.7		
4.7	Loss curve of a single multi-class model	65
4.8	Confusion matrix of a single multi-class model	65
4.9	Classification report of single multi-class model	66

4.10	Loss curve of the individual models used for the	
	one-vs-all modelling	67
4.11	Confusion matrix of method_A	68
4.12	Classification report of method_A	68
4.13	Confusion matrix of method_B	69
4.14	Classification report of method_B	69
4.15	Confusion matrix of method_C	70
4.16	Classification report of method_C	71
4.17	Feature importance score of the selected 15 features of each class and single model	72
4.18	Feature importance score of the selected 15 features of each	. –
	class and single model (Contd.)	73
4.19	Loss curve of the single multi-class model with feature selection	74
4.20	Confusion matrix of the single multi-class model with feature selection	74
4.21	Classification report of the single multi-class model with feature selection	75
4.22	Loss curve of the individual models used for the one-vs-all modelling with feature selection	76
4.23	Confusion matrix of method_A with feature selection	77
4.24	Classification report of method_A with feature selection	77
4.25	Confusion matrix of method_B with feature selection	78
4.26	Classification report of method_B with feature selection	78
4.27	Confusion matrix of method_C with feature selection	79
4.28	Confusion matrix of method_C with feature selection	80
4.29	Confusion matrix of the single multi-class model with feature selection and balancing techniques implemented	82
4.30	Classification report of the single multi-class model with feature selection and balancing techniques implemented	82

4.31	Confusion matrix of method_A with feature selection and	
	balancing techniques implemented	84
4.32	Classification report of method_A with feature selection and	
	balancing technique implemented	85
4.33	Confusion matrix of method_B with feature selection and	
	balancing techniques implemented	85
4.34	Classification report of method_B with feature selection and	
	balancing technique implemented	86
4.35	Confusion matrix of method_C with feature selection and	
	balancing technique	87
4.36	Classification report of method_C with feature selection and	
	balancing technique	87
4.37	Hyperparameter of the xgboost model	88
4.38	Confusion matrix of the xgboost model	88
4.39	Classification report of the xgboost model	89
4.40	Hyperparameters of the random forest model	89
4.41	Confusion matrix of the random forest model	89
4.42	Classification report of the random forest model	90
4.43	Confusion matrix of the proposed model	91
4.44	Confusion matrix of the proposed model	91
4.45	Unknown attack (Type-B) evaluation of the proposed model	92
4.46	Unknown attack (Type-A) evaluation of the proposed model	93

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
1.1	Cyber-attacks and their definitions	3
1.2	Summary of Objectives	5
3.1	Snapshot of the CICIDS2018 features	47
3.2	Confusion matrix	54
3.3	Evaluation metrics	55
4.1	The csv files of the CICIDS2018 dataset	58
4.2	Removed features from the CICIDS2018 dataset	59
4.3	The class distribution of the CICIDS2018 dataset before	
	and after the removal of null and infinite values	59
4.4	Completely pre-processed CICIDS2018 dataset's class distribution	60
4.5	Selected hyperparameters	64
4.6	False alarm rate and specificity of the single multi-class model	66
4.7	False alarm rate and specificity of method_A	68
4.8	False alarm rate and specificity of method_B	70
4.9	False alarm rate and specificity of method	71
4.10	False alarm rate and specificity of the implemented model	75
4.11	False alarm rate and specificity of the method_A	77
4.12	False alarm rate and specificity of method_B	79
4.13	False alarm rate and specificity of method_C with feature	
	selection	80
4.14	Performance of the single multi-class model on various balancing	
	techniques	81
4.15	False alarm rate and specificity of the single multi-class model	
	with feature selection and balancing techniques implemented	82

4.16	Results of balancing techniques performed on the infiltration	
	class model	83
4.17	Results of balancing techniques performed on the web class	84
4.18	False alarm rate and specificity of method_A with feature	
	selection and balancing technique implemented	85
4.19	False alarm rate and specificity of method_B with feature	
	selection and balancing technique implemented	86
4.20	False alarm rate and specificity of method_C with feature	
	selection and balancing technique implemented	87
4.21	False alarm rate and specificity of the XGBoost model with	
	feature selection and balancing technique implemented	89
4.22	False alarm rate and specificity of the Random Forest model	
	with feature selection and balancing technique implemented	90
4.23	False alarm rate and specificity of the proposed model with	
	feature selection and balancing technique implemented	91
4.24	Comparative summary of models without feature selection	94
4.25	Comparative summary of models with feature selection	95
4.26	Comparative summary of models with feature selection and	
	balancing techniques implemented	96
4.27	Comparative summary of the proposed model, state-of-the-art	
	machine learning algorithms and existing models in literature	97

LIST OF ABBREVIATIONS

AI Artificial Intelligence

A-NIDS Anomaly Network Intrusion Detection Systems

AWS CLI Amazon Web Service Command Line Interface

BiDLSTM Bidirectional Long Short-Term Memory

CES-CIC-IDS Communications Security Establishment and the Canadian

Institute for Cybersecurity Intrusion Detection System

CNN Convolution Neural Network

CRISP-DM CRoss Industry Standard Process for Data Mining

CSV Comma Separated Value

DBN Deep Belief Network

DDoS Distributed Denial of Service

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service

DVWA Damn Vulnerable Web App

EFC Energy-Based Flow Classification

ELM Extreme Learning Machine

EOT Edge-of-Things

FAR False Alarm Rate

FN False Negative

FP False Positive

FTP File Transfer Protocol

HOIC High Orbit Ion Cannon

IDS Intrusion Detection System

Interpol International Criminal Police Organization

IoT Internet of Things

IR Imbalance Ratio

JSON JavaScript Object Notation

KNN K-Nearest Neighbours

LASSO Least Absolute Shrinkage and Selection Operator

Light Gradient Boosting Machine

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NB Naïve Bayes

NIDS Network Intrusion Detection

NIST National Institute of Standards and Technology

NMUS NearMiss Under-sampling

NN Neural Network

PCA Principal Component Analysis

PKI Public Key Infrastructure

R² Coefficient of Determination

R2L Root to Local

RBM Restricted Boltzmann Machines

RF Random Forest

RNN Recurrent Neural Network

SC Silhouette Coefficient

SCADA Supervisory Control and Data Acquisition

SFSDT Sequence Forward Selection algorithm with Decision Tree

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Over-sampling Technique

SSH Secure Shell

SVM Support Vector Machine

TN True Negative

TP True Positive

U2R User to Root

WELM Weighted Extreme Learning Machine

XGBoost eXtreme Gradient Boosting

XML eXtensible Markup Language

XSS Cross-Site Scripting

ABSTRACT

The internet is advancing at a fast pace, and it is very essential to individuals and organizations. Also, there are a lot of malicious actors on the internet and a successful attack on a victim can be very devastating. Hence, the growing need for cybersecurity. Network security helps protect computer networks from attackers and this can be achieved with the help of intrusion detection systems (IDS). Over the years researchers have proposed improvements to IDSs, however, the problem of low detection rate especially towards minority classes within the available datasets plagues the research area. This study builds and evaluates an ensemble anomaly-based network intrusion detection system for multiclass classification using an argmax one-vs-all approach. The Communications Security Establishment and the Canadian Institute for Cybersecurity Intrusion Detection System 2018 dataset (CSE-CIC-IDS2018), referred to as CICIDS2018, was used in this study. The eXtreme Gradient Boosting (XGBoost) was used for feature selection and the Minority Oversampling Technique (SMOTE) alongside cost-sensitive learning were utilized to address the imbalanced nature of the CICIDS2018 dataset. The Multilayer Perceptron (MLP), Random Forest (RF), and XGBoost were used to build the ensemble model. A onevs-all approach was adopted to design an ensemble of the classifiers tailored to detecting a specific class within the dataset. This means that the feature selection process was done for each class, producing multiple datasets based on the number of classes within the dataset. The results of the classifiers are then combined and aggregated using the argmax function. Finally, the proposed model was evaluated against other models, existing works in literature and unknown attacks to see how well the model performs. The results showed that the proposed approach performs better than other approaches achieving a better macro average F1-score of 83.50% and an improved classification of the minority classes, attaining an F1-score of 29.95% and 75.98% in the infiltration and web classes respectively. The infiltration class was seen to be hard to decipher from the benign class and so approaches to properly separate and oversample the infiltration class should be taken to improve the detection of the class.

Keywords: Intrusion Detection System, CICIDS2018, Cyber Security, Machine Learning, Deep Learning