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ABSTRACT 

The internet is advancing at a fast pace, and it is very essential to individuals and 

organizations. Also, there are a lot of malicious actors on the internet and a successful attack 

on a victim can be very devastating. Hence, the growing need for cybersecurity. Network 

security helps protect computer networks from attackers and this can be achieved with the 

help of intrusion detection systems (IDS). Over the years researchers have proposed 

improvements to IDSs, however, the problem of low detection rate especially towards 

minority classes within the available datasets plagues the research area. This study builds 

and evaluates an ensemble anomaly-based network intrusion detection system for multi-

class classification using an argmax one-vs-all approach. The Communications Security 

Establishment and the Canadian Institute for Cybersecurity Intrusion Detection System 

2018 dataset (CSE-CIC-IDS2018), referred to as CICIDS2018, was used in this study. The 

eXtreme Gradient Boosting (XGBoost) was used for feature selection and the Minority 

Oversampling Technique (SMOTE) alongside cost-sensitive learning were utilized to 

address the imbalanced nature of the CICIDS2018 dataset. The Multilayer Perceptron 

(MLP), Random Forest (RF), and XGBoost were used to build the ensemble model. A one-

vs-all approach was adopted to design an ensemble of the classifiers tailored to detecting a 

specific class within the dataset. This means that the feature selection process was done for 

each class, producing multiple datasets based on the number of classes within the dataset. 

The results of the classifiers are then combined and aggregated using the argmax function. 

Finally, the proposed model was evaluated against other models, existing works in 

literature and unknown attacks to see how well the model performs. The results showed 

that the proposed approach performs better than other approaches achieving a better macro 

average F1-score of 83.50% and an improved classification of the minority classes, 

attaining an F1-score of 29.95% and 75.98% in the infiltration and web classes respectively. 

The infiltration class was seen to be hard to decipher from the benign class and so 

approaches to properly separate and oversample the infiltration class should be taken to 

improve the detection of the class. 

 

 

Keywords: Intrusion Detection System, CICIDS2018, Cyber Security, Machine 

Learning, Deep Learning 
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