MITIGATION OF AMMONIUM CHLORIDE CORROSION ON CARBON STEEL IN REFINING UNIT

 \mathbf{BY}

AKPANYUNG KINGSLEY VICTOR 17PCM01712

July, 2019

MITIGATION OF AMMONIUM CHLORIDE CORROSION ON CARBON STEEL IN REFINING UNIT

 \mathbf{BY}

AKPANYUNG KINGSLEY VICTOR

17PCM01712

B.Eng Metallurgical and Materials Engineering, Nnamdi Azikiwe University, Awka.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT FOR THE AWARD OF MASTERS OF ENGINEERING (M.Eng) IN MECHANICAL ENGINEERING IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSTY, OTA

July, 2019

ACCEPTANCE

This is to attest that this is accepted in partial fulfillment of the requirements for the award of the degree of Masters of Engineering in Mechanical Engineering in the department of Mechanical Engineering, College of engineering, Covenant University, Ota.

Mr John a. Phillip	
Secretary, School of Postgraduate studies	signature and date
D 0.1.1	
Prof Abiodun H. Adebayo	
Dean, school of Postgraduate Studies	signature and date

DECLARATION

I, AKPANYUNG KINGSLEY VICTOR (17PCM01712) declare that this research work was carried out by me under the supervision of Prof. R. T. Loto of the department of Mechanical Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All source of data, scholarly information used in this are duly acknowledged.

AKPANYUNG, KINGSLEY VICTOR	
	Signature and date

CERTIFICATION

We certify that the dissertation titled "Mitigation of Ammonium Chloride Corrosion on Carbon Steel in Refining Unit" is an original work carried out by Akpanyung, Kingsley Victor (17PCM01712), in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Roland T. Loto. We have examined and found the work acceptable for the award of a Masters in Engineering in Mechanical Engineering.

Prof. Roland T. Loto	
(Supervisor)	Signature & Date
Prof. Oyedepo S. Olayinka	
(Head of Department)	Signature & Date
Prof. Oyewola O. Miracle	
(External Examiner)	Signature and Date
Prof. Adebayo Abiodun	
(Dean, School of Postgraduate studies)	Signature & Date

DEDICATION

I am dedicating this research work to God Almighty for bringing me this far. None of my input in this work was without him. To him alone be all the glory.

ACKNOWLEDGEMENTS

I would like to appreciate my supervisor Prof Roland T. Loto of Mechanical Engineering Department of Covenant University. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it.

I would also like to thank my able Head of Mechanical Department of Covenant University, Prof. Sunday O. Oyedepo and the vibrant Post Graduate Coordinator of Mechanical Engineering Department of Covenant University Dr. Ojo S. Fayomi for their relentless effort to see that I attain a feat in this work.

I would also like to extend my sincere gratitude to Engr. Samuel Ayuba, Engr. Muyiwa A. Fajobi and all my course mates who assisted in sharing their effort and knowledge to make this research work a success.

Finally, I wish to express my profound gratitude to my parents, Mr. and Mrs. Akpanyung and to my lovely wife, Chidinma Akpanyung for providing me with unfailing support and continuous encouragement throughout my period of study and through the process of researching and writing this thesis. This achievement would not have been a dream comes through without them.

TABLE OF CONTENTS

ACCEPT	TANCE	iii
DECLA	RATION	iv
CERTIF	ICATION	v
DEDICA	ATION	vi
ACKNO	WLEDGEMENTS	vii
ABSTRA	ACT RODUCTION	XI 1
1.1	BACKGROUND OF THE STUDY	1
1.2	PROBLEM STATEMENT	3
1.3	AIM	4
1.4	OBJECTIVES	4
1.5	JUSTIFICATION FOR THE STUDY	4
1.6	STUDY LIMITATION	4
2. LIT	ERATURE REVIEW	5
2.1	AN OVERVIEW ON CORROSION	5
2.2	IMPORTANT OF CORROSION STUDY	7
2.3	CHEMISTRY OF CORROSION	8
2.3.	1 CHEMICAL OR DRY CORROSION	8
2.3.2	2 PILLING BEDWORTH RULE	10
2.3.3	WET OR ELECTROCHEMICAL CORROSION	11
2.4	FACTORS THAT CONTROL CORROSION RATE	14
2.5	COST OF CORROSION DAMAGE	15
2.6	TYPES OF CORROSION	17
2.6.	UNIFORM CORROSION	18
2.6.2	2 GALVANIC CORROSION	19

2.6.3	HIGH TEMPERATURE CORROSION	20
2.6.4	ATMOSPHERIC CORROSION	21
2.6.5	CREVICE CORROSION	22
2.6.6	FILIFORM CORROSION	23
2.6.7	INTERGRANULAR AND TRANSGRANULAR CORROSION	24
2.6.8	CORROSION FATIGUE	25
2.6.9	STRESS CORROSION CRACKING	25
2.6.10	FRETTING CORROSION	27
2.6.11	LOCALIZED BIOLOGICALCORROSION	27
2.6.12	PITTING CORROSION	28
2.7 CO	ORROSION PREVENTION AND CONTROL	30
2.7.1	METHODS OF CORROSION CONTROL	31
2.8 ST	TEEL, ITS GRADES AND CORROSION	36
2.8.1	STEEL NUMBERING SYSTEMS	37
2.8.2	CARBON STEEL	38
2.8.3	ALLOY STEEL	39
2.9 Al	MMONIUM CHLORIDE (NH4CL) CORROSION	47
2.9.1	LOCATION OF CORROSION AND TYPES	50
2.9.2	NEUTRALIZATION OF ACIDS	53
2.9.3	THERMODYNAMIC BEHAVIOR OF A WET AMMONIUM CHL	
SYSTI	EM	53
2.9.4	CASE STUDY	54
3. MATE	RIALS AND METHODOLOGY	59
3.1 M	ATERIALS	59
3.2 PF	ROCEDURES	59
3.2.1	PREPARATION OF CARBON STEEL SAMPLES	59
3.2.2	CORROSION MEDIUM	59
3.2.3	WEIGHT-LOSS MEASUREMENT	60
3.2.4	POLARIZATION	60
4. RESUI	LT AND DISCUSSION	62
41 RI	ESULTS OBTAINED FOR CARBON STEEL 0.5M HCL	62

4.2 RESULTS OBTAINED FOR CARBON STEEL IN INHIBITED 1.0M HCL	66
4.4 RESULTS OBTAINED FOR CARBON STEEL IN INHIBITED 20%NH ₄ CL	71
4.5 RESULTS OBTAINED FOR CARBON STEEL IN INHIBITED 30%NH ₄ CL	
SOLUTION	76
5. CONCLUSION AND RECOMMENDATION	81
5.1 CONCLUSION	81
5.2 RECOMMENDATION	81
6. REFERENCE	82

ABSTRACT

Ammonium chloride corrosion produces localized destructive form of corrosion posing devastating threat to refining equipment integrity and safety of refinery process. Ammonium chloride forms an underdeposit corrosion mostly experienced in the overhead equipment and piping for crude and hydroprocessing units causing severe fouling and damages that posed negative impact on the operating reliability of various processing units. This work addresses the corrosion mechanism caused by ammonium chloride and its inhibition against Hydrochloric acid using Carbon steel. Weight loss analysis and polarization was used to study the inhibition efficiency and corrosion rate of the samples in 0.5M HCl, 1.0M HCl, 20% NH₄Cl and 30% NH₄Cl solution. The average inhibition efficiency and corrosion rate for 0mL, 2mL, 4mL, 6mL, 8mL, and 10mL of Neem Oil in 0.5M HCl, 1.0M HCl, 20% NH₄Cl, and 30% NH₄Cl solutions were determined. Result showed that Neem Oil Extract was effective in both HCl and NH₄Cl solution on Carbon steel. Inhibition efficiency of each samples increases with Neem Oil concentration while the corrosion rate decreases with concentration.