GAS-TO-WIRE FOR UTILIZATION OF STRANDED ASSOCIATED GASES IN NIGER DELTA

OGUNLADE, STEPHEN KEHINDE (20PCF02080)

JULY, 2022

GAS-TO-WIRE FOR UTILIZATION OF STRANDED ASSOCIATED GASES IN NIGER DELTA

BY

OGUNLADE, STEPHEN KEHINDE (20PCF02080) B.Tech. Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng.) DEGREE IN CHEMICAL ENGINEERING IN THE DEPARTMENT OF CHEMICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

JULY, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Masters of Engineering in Chemical Engineering in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State.

Mr Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OGUNLADE, STEPHEN KEHINDE (20PCF02080) declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Professor James Omoleye of the Department of Chemical Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

OGUNLADE, STEPHEN KEHINDE

Signature and Date

CERTIFICATION

This is to certify that the research work titled "GAS-TO-WIRE FOR UTILIZATION OF STRANDED ASSOCIATED GASES IN NIGER DELTA" is an original research work carried out by OGUNLADE, STEPHEN KEHINDE (MATRIC. No: 20PCF02080) meets the requirements and regulations governing the award of Master of Engineering (M.Eng.) degree in Chemical Engineering from the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Prof. James A. Omoleye (Supervisor)

Prof. Vincent E. Efeovbokhan (Head of Department)

Prof. Kayode G. Latinwo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated first and foremost to the God Almighty, the custodian of all wisdom, knowledge, and understanding, for His grace and favour throughout the duration of carrying out this research. Then to my family for their endless support and love.

ACKNOWLEDGEMENT

I am extremely grateful to the Board of regent of Covenant University. I would like to express my deepest gratitude to the Chancellor, Dr David O. Oyedepo. I would also like to acknowledge the entire management of Covenant University, starting from the Vice-Chancellor, Prof. Abiodun H. Adebayo and the Dean, School of Postgraduate Studies, Prof. Akan B. Williams for ensuring a research-driven institution.

I also appreciate the Head of the Chemical Engineering Department, Prof. Vincent E. Efeovbokhan, my supervisor Prof. James A. Omoleye, the departmental post graduate coordinator Dr (Mrs) Olayemi A. Odunlami, all Faculty and Staff of Chemical Engineering department for their support.

I would also like to acknowledge my employer – Dow Industrial Chemical Products Nigeria Limited, my immediate supervisor, Silvia Pena, former leaders (Edosa, Adriano, Lisa, Ahmed) and members of my Lagos team (Adebisi, Toby-Lade, Helen, Adejoke, Chucks, Pride, Augustina, Awele, and Anu).

My special appreciation goes to the managing director of Weam and Company Ltd – Sir Morgan Wereuche Amadi for allowing me to carry out the process simulation and cost estimation in his Port Harcourt office. I also like to appreciate Mr. Tamuno Amiesimaka and Theophile Megueptchie of the same organization for their support.

I also appreciate my post graduate colleague and friends –Denen Vershima, Sonia Nkongho, Temiloluwa Amoo, Oboroghene Olomukoro and Neza Ezekiel.

I would also like to appreciate the effort of my late parents Mr. and Mrs. Zacchaeus Ogunlade for their past financial support. My superior appreciation goes to my immediate family (Oluwatosin Ogunlade, Oluwatofunmi Ogunlade and Oluwanifemi Ogunlade) and my older siblings (Yusuf, Yinka, Jimoh, Fasilat, Emmanuel and John).

TABLE OF CONTENTS

ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENT	vii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS AND SYMBOLS	XV
ABSTRACT	xvi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	4
1.3 Aim and Objectives of the Study	4
1.4 Justification of the Study	5
1.5 The Scope of the Study	5
CHAPTER TWO	6
LITERATURE REVIEW	6
2.1 Gas Flaring	6
2.2 Effects of Gas Flaring	6
2.2.1 Causal Factors of Gas Flaring	9
2.3 Global Gas Flaring Reduction Initiatives	11
2.3.1 Gas re-injection	12
2.3.2 Power generation	13
2.3.3 Compressed natural gas (CNG)	15
2.3.4 Liquefied petroleum gas (LPG)	16
2.3.5 Liquefied natural gas (LNG)	16
2.3.6 Natural gas hydrates (NGH)	17
2.3.7 Gas to liquid (GTL)	18
2.4 Gas Flaring Initiatives in Nigeria	19
2.5 Power Generation from Stranded Natural Gas	19

2.6 Gas-to-Wire	26
2.6.1 Gas sweetening process using amine solvents	27
2.6.1.1 Amine solvents	29
2.6.2 Natural gas dehydration	35
2.6.2.1 Process description of natural gas dehydration using glycol as the solvent	35
2.6.2.2 Triethylene glycol as dehydrating agent for sweet gas	36
2.7 Review of Past Works	40
CHAPTER THREE	44
METHODOLOGY	44
3.1 Resources Required	44
3.2 Procedure	44
3.2.1 Flare site selected and gas conditions	44
3.2.2 Gas conditioning and power generation method (gas-to-wire process)	46
3.2.3 The block flow diagram for gas-to-wire	51
3.2.4 Process route description	51
3.2.5 Input specifications for the process simulation base cases	52
3.2.6 Basis for sensitivity analyses (process optimization)	54
3.2.7 The basis for simulation validation	55
3.2.8 Basis for equipment sizing and cost estimation	56
CHAPTER FOUR	59
RESULTS AND DISCUSSION	59
4.1 Results	59
4.1.1 Base case simulation result of acid gas removal unit	59
4.1.2 Sensitivity studies of acid gas removal unit	62
4.1.3 Validation of simulated report of acid gas removal unit	67
4.1.4 Equipment sizing report of acid gas removal unit	67
4.1.5 Base case simulation report of gas dehydration unit	71
4.1.6. Sensitivity studies of gas dehydration unit	74
4.1.7 Validation of simulated report of gas dehydration unit	76
4.1.8 Equipment sizing report of gas dehydration unit	77
4.1.9: Base case simulation report of combined cycle power plant	80
4.1.10: Sensitivity studies of combined cycle power plant	82
4.1.11: Equipment sizing report of combined cycle power plant	88

4.1.12 Summary of cost estimation of gas-to-wire system	91
4.2 Discussion of Results	93
4.2.1 Base case simulation - acid gas removal unit	93
4.2.2 Sensitivity analysis -acid gas removal unit	94
4.2.3 Equipment sizing -acid gas removal unit	95
4.2.4 Base case simulation – gas dehydration unit	95
4.2.5 Sensitivity analysis -gas dehydration unit	96
4.2.6 Equipment sizing – gas dehydration unit	97
4.2.7 Base case simulation- combined cycle power plant	98
4.2.8 Sensitivity analysis – combined cycle power plant	98
4.2.9 Equipment sizing- combined power cycle	99
4.2.10 Cost estimation -gas-to-wire system	99
CHAPTER FIVE	101
CONCLUSION AND RECOMMENDATION	101
5.1 Conclusion	101
5.2 Recommendation	102
5.3 Contribution to Knowledge	102
REFERENCE	103
APPENDIX	114

LIST OF FIGURES

FIGU	JRES LIST OF FIGURES	PAGES
2.1	Enhanced Oil Recovery Techniques Involving Gas Injection Technologies	13
2.2	The Options for Electricity Transmission in Oil Fields	15
2.3	Brayton Cycle Flow Chart	21
2.4	Stages Involved in the Brayton Cycle	22
2.5	Simple Cycle Gas Turbine Schematic Diagram	23
2.6	Combined Cycle Gas Turbine Schematic Diagram	24
2.7	Solid Oxide Fuel Cell Schematic Diagram	26
2.8	Gas Sweetening Process Using Amine Solvent	29
2.9	Murphree Efficiency Illustration Showing the Definition of the Mole Fraction	32
2.10	Model of Mass Transfer for the Two-Film Theory	34
2.11	Gas Dehydration Plant Set-Up	36
3.1	Chart for Selecting CO2 Removal Technologies Available Commercially	47
3.2	Selection of Gas Dehydration Method	50
3.3	Block Flow Diagram for Gas-to-wire	51
4.1	Process Flow Diagram of Acid Gas Removal Unit	60
4.2	Effect of Lean Amine Temperature on the Rich Amine CO ₂ Loading	63
4.3	Effect of Lean Amine Temperature on the Composition of CO_2 of the Sweet Ga	s 63
4.4	Effect of Pressure of the Sour Gas on Sweet Gas - CO ₂ Composition	64
4.5	Effect of Amine Weight Strength on CO ₂ in Sweet Gas	64
4.6	Effect of Amine Weight Strength on Rich Amine CO2 Loading	65
4.7	CO ₂ Absorption Across Absorber Trays	65
4.8	Vapour Molar Flow Across Absorber Trays	66
4.9	Temperature Profile Across Absorber Trays	66
4.10	Process Flow Diagram of Gas Dehydration Unit.	71
4:11	Effect of Lean TEG Temperature on Water Dew Point of the Dehydrated Gas.	74
4:12	Effect of Lean TEG Temperature on Water Content of the Dehydrated Gas	75
4.13	Effect of Number of Trays in Absorber on Dew Point of the Dehydrated Gas	75
4:14	Effect of Number of Trays in Absorber on Water Content of the Dehydrated Ga	as 76
4.15	Process Flow Diagram of Combined Cycle Power Plant	80

4.16	Effect of Air Temperature on Heat Flow and Power Produced by Gas Turbine	83
4.17	Effect of Inlet Air Temperature on Compressor Heat Flow	84
4.18	Effect of Inlet Air Temperature on Compressor Power Consumption	84
4:19	Effect of Polytropic Efficiency on Steam Turbine 1 Power Generated	85
4.20	Effect of Polytropic Efficiency on the Power Generated by Steam Turbine 2	86
4.21	Effect of Isentropic Efficiency of Gas Turbine on Gas Turbine	86
4.22	Effect of Adiabatic Efficiency of Air Compressor on Total Thermal Efficiency	87
4.23	Effect of Adiabatic Efficiency of Air Compressor on the Net Power Generated	87

LIST OF TABLES

ТАВ	LES TITLE OF TABLES	PAGES
3.1	Gas Composition	45
3.2	Typical Pipeline Gas Specifications.	46
3.3	Comparison of Suitability of Various Amines for CO ₂ Removal.	49
3.4	Basis of Equipment Sizing and Economics.	57
3.5	Basis of Sizing of Major Process Equipment.	57
3.6	Material of Construction.	58
4.2	Summary of Heat Stream – Acid Gas Removal Unit	61
4.3	Rich and Lean Amines Strength, CO2 Loading and Recirculation Rates	61
4.4	Summary of Regenerator Details – Acid Gas Removal Unit	62
4.5	Parameters for the validation of DEA Solution Recirculation Rate	67
4.6	Sizing Details of Flash Drum	68
4.7	Lean/Rich Amine Heat Exchanger	68
4.8	Sizing Details of Booster Pump	69
4.9	Sizing Details of Valve	69
4.11	Sizing Details of Regenerator Main Tower	70
4.12	Sizing Details of Knockout Drum	70
4.13	Summary of Material Streams – Gas Dehydration	72
4.14	Summary of Energy Streams – Gas Dehydration	72
4.15	Summary of Lean and Rich Glycol	72
4.16	Details of Regenerator -Gas Dehydration	73
4:17	Details of Stripping Gas – Gas Dehydration	73
4.18	Details of Gas Dehydration Performance	73
4.19	Parameters for the validation of Optimal TEG Solution Recirculation Rate	76
4.20	Sizing Report of Heat Exchanger – Gas Dehydration	77
4.21	Sizing Report of Air Cooler – Gas Dehydration	78
4.23	Sizing Report of Glycol Circulating Pump	79
4.24	Sizing Report of Valve	79
4.25	Sizing Report of Absorber Main Tower	79
4.26	Sizing Report of Regenerator Main Tower	80
4:27	Summary of Material Stream – Combined Cycle Power Plant	81

Summary of Energy Stream – Combined Cycle Power Plant	81
Details of Power Generated (Base Case Simulation)	82
Sizing Report of Air Compressor	88
Sizing Report of Turbines	89
Sizing Report of Pressure Reduction Unit (Valve)	89
Sizing Report of Evaporator	90
Sizing Report of Water Pump	90
Cost Estimation of Acid Gas Removal Unit	91
Equipment Costing (Acid Gas Removal Unit)	91
Cost Estimation of Gas Dehydration Unit	91
Equipment Costing (Gas Dehydration)	92
Cost Estimation of Combined Cycle Power Plant	92
Equipment Costing (Combined Cycle)	92
	Details of Power Generated (Base Case Simulation) Sizing Report of Air Compressor Sizing Report of Turbines Sizing Report of Pressure Reduction Unit (Valve) Sizing Report of Evaporator Sizing Report of Water Pump Cost Estimation of Acid Gas Removal Unit Equipment Costing (Acid Gas Removal Unit) Cost Estimation of Gas Dehydration Unit Equipment Costing (Gas Dehydration) Cost Estimation of Combined Cycle Power Plant

LIST OF ABBREVIATIONS AND SYMBOLS

MEA	Monoethanolamine
DEA	Diethanolamine
MDEA	Methyl diethanolamine
TEG	Triethylene Glycol
GTW	Gas-to-wire
MMSCF	Million Metric Standard Cubic Feet
MMscfd	Million Metric Standard Cubic Feet Per Day
GPM	US Gallon Per Minute
SCF	Standard Cubic Feet

ABSTRACT

Gas-to-wire system has been a promising technology to convert stranded gas to electricity in remote oilfield locations where there is no infrastructure to monetize the gas. The research work was carried out to design an optimized process system which includes process simulations, equipment sizing and cost estimations. The basis for the work is a 5.1 MMscfd (million standard cubic feet per day) of associated gas from an active gas flaring site in Niger Delta Nigeria. The inlet gas has a temperature of 35°C, pressure of 66.5 barg, water content of 63.13 lb/MMSCF, water dew point of 40 °C and 3.97% molar concentration of CO₂. The gas-to-wire process route selected comprises acid gas removal, gas dehydration and a combined cycle system. ASPEN HYSYS V10 was used to produce a base case process simulation and sensitivity analyses to arrive at optimal process operating conditions which include for the acid gas removal unit: 8.70 m³/hr of 28% weight strength of Diethanolamine (DEA) in aqueous solution, lean loading of 0.00757 (mol/mol), rich loading of 0.4310 (mol/mol), reboiler duty of 1.002 (lb Steam/Gallon Rich Amine) and 20number of absorber trays with 33% efficiency to obtain a treating gas specification of 15ppm of CO₂. For gas dehydration, 0.90 kg/hr recirculation rate of Triethylene glycol (99.8 % by mass) with 0.033 MMscfd of stripping gas injected into the reboiler was the optimal condition to dehydrate the wet from the amine gas treating unit gas to 0.7 lb/MMSCF water content and dew point of -7 °C using 4 absorber trays with 25% efficiency when the lean amine temperature is 40 °C. The combined cycle efficiency simulated has a net power of 27.5 MW and total thermal efficiency of 42%. The research work contributed process design data that can be used to make technical and investment decisions.

Keywords: Gas-to-wire, Process Simulation, Equipment Sizing, Costings.