THERMODYNAMIC MODELLING OF LIQUID-LIQUID EXTRACTION OF LIMONOIDS FROM Azadirachta indica

NKONGHO, SONIA (20PCF02279)

JULY, 2022

THERMODYNAMIC MODELLING OF LIQUID-LIQUID EXTRACTION OF LIMONOIDS FROM Azadiractha indica

BY

NKONGHO, SONIA (2OPCF02279) B.Eng Chemical Engineering, Catholic University of Cameroon, Bamenda

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING (M.Eng) IN THE DEPARTMENT OF CHEMICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

JULY, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment for the degree of Master of Engineering in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, NKONGHO SONIA (20PCF02279), declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Doctor Olayemi A. Odunlami of the Department of Chemical Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has in no way been submitted either wholly or partially to any other University or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

NKONGHO, SONIA

Signature and Date

CERTIFICATION

This is to certify that the research work titled "THERMODYNAMIC MODELLING OF LIQUID-LIQUID EXTRACTION OF LIMONOIDS FROM *Azadirachta indica*", is an original research work carried out by NKONGHO SONIA meets the requirements and regulations governing the award of Master of Engineering (M.Eng) degree in Chemical Engineering from the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr. Olayemi A. Odunlami (Supervisor)

Prof. Vincent E. Efeovbokhan (HOD, Chemical Engineering)

Prof. Kayode G. Latinwo (External examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This work is dedicated to the Almighty God for His divine direction and favor throughout this work. It is only by His grace this work was completed. I also dedicate this work to my mother, Tambe Cecilia Nkongho, and my sister Agbor Pamela Tambe for their constant prayers, moral and financial support. May God replenish the source abundantly.

ACKNOWLEDGMENT

I am extremely grateful to God for His favor and constant direction on what to do per time to accomplish my goals. He continuously edified me with wisdom, knowledge, and understanding.

Words cannot express my gratitude to the Board of Regents, Covenant University for granting me the Covenant University International Excellence Scholarship, which has been of great assistance to my journey so far. I would like to express my deepest gratitude to the Chancellor, Dr David. O Oyedepo, the Vice-Chancellor; Prof. Abiodun H. Adebayo, the Registrar; Mr. Emmanuel Igban for providing a conducive learning and research environment.

I appreciate my HOD, Prof. Efeovbokhan Vincent Enontiemonria, my supervisor, Dr. Olayemi A. Odunlami, Dr. Oladokun Olagoke Abimbola, Dr. Saani Samuel Eshorame, Dr. Fred T. Ogunkunle, and all the lecturers of Chemical Engineering Department, Covenant University for their relentless support, advice, laboratory analysis aid in using the software in this work.

I would like to express my deepest gratitude to the staff of the international office and fellow international students for all the moral support they gave me throughout this journey.

I would be remiss in not mentioning my course mates and college mates, Mr. Vershima Denen, Mr. Stephen Ogunlade, Mr. Adaosila Price Osilaechuu, Mr. Odokuma Ogagaoghene Emmanuel for their support and advice.

Special thanks go to my family and friends for all their support, Tambe Cecilia, Agbor Pamela Tambe, my Dad, Agbor-Ndip Bate Eban, Dibaya Sydnee-Fatith, Dibaya Jessy-Bradeen, Dibaya Henry Mbok.

TABLE OF CONTENTS

	PAGES
ACCEPTANCE	iii
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF PLATES	XV
LIST OF ABBREVIATIONS	xvi
ABSTRACT	xvii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Research Problem	4
1.3 Aim and Objectives of the Study	5
1.4 Justification of the study	6
1.5 Scope of the Study	7
CHAPTER TWO	8
LITERATURE REVIEW	8
2.1 Medicinal Plants	8
2.2 Neem Plant (Dongoyaro)	11

2.2.1 Botanical description and distribution	11
2.2.2 Taxonomy of neem plant	12
2.2.3 Phytochemistry of Azadirachta indica	13
2.2.4 Pharmacology of neem	15
2.2.5 Toxicological studies	18
2.3 Limonoids from Genus Melia (Meliaceae)	20
2.3.1 Gedunin	20
2.3.2 Azadirachtin	21
2.3.3 Nimbolide	22
2.4 Qualitative Analysis (Quality Control)	23
2.5 Extraction of Herbal Medicine	24
2.6 Extraction Methods	26
2.6.1 Cold extraction	26
2.6.2 Maceration	26
2.6.3 Percolation	26
2.6.4 Digestion	27
2.6.5 Soxhlet extraction	27
2.6.6 Infusion	27
2.6.7 Microwave-Assisted extraction (MAE)	27
2.6.8 Supercritical Fluid Extraction (SFE)	28
2.6.9 Pressurized Liquid Extraction (PLE)	29
2.6.10 Liquid-liquid Extraction (solvent extraction process)	29
2.7 Optimization of the Extraction Process (factors that affect extraction process)	31
2.7.1 Impact of temperature:	31
2.7.2 Effect of solutes:	31
2.7.3 Effect of pH	31
2.7.4 Effect of ion-pair formation:	32
2.7.5 Effect of synergistic extraction:	32
2.8 Extraction Solvents	32
2.8.1 Solvent selection	33

2.9 Liquid-liquid Equilibria (LLE)	35
2.9.1 Equilibrium relations in extraction	36
2.10 ASPEN plus Software	39
2.10.1 Thermodynamic Modelling with ASPEN plus	40
2.10.2 Regression on ASPEN Plus	45
CHAPTER THREE	48
METHODOLOGY	48
3.1 Materials	48
3.2 Equipment or Apparatus	49
3.3 Experimental Procedure	51
3.3.1 Sample preparation for characterization	51
3.3.2 Phytochemical characterization using gas chromatography-mass spectroscopy	52
3.3.3 Ternary mixture preparation	53
3.3.4 Gas Chromatography-Flame Ionization Detector (GC-FID) analysis of limonoid in Plant Extracts	ls 53
3.3.5 Phase equilibrium data	54
3.3.6 Reliability of experimental LLE data	56
3.3.7 Experimental data correlation	56
CHAPTER FOUR	58
RESULTS AND DISCUSSION	58
4.1 Results from Sample Analysis	58
4.1.1 Experimental liquid-liquid equilibria (LLE) Data results	59
4.1.2 Distribution coefficient (D) and separation factor (S) results	62
4.1.3 Reliability of experimental LLE data	67
4.1.4 Comparison of experimental mass fraction values to Aspen plus predicted values plots	68
4.1.5 Correlation of LLE data results and regression binary interaction parameters	75

4.2 Discussion of Results	76
4.2.1 Experimental LLE Data result	76
4.2.2 Distribution coefficient (D) and separation factor (S) results	77
4.2.3 Reliability of experimental LLE data	78
4.2.4 Correlation of experimental mass fraction values to Aspen plus predicted values	78
4.2.5 LLE data correlation analysis	79
CHAPTER FIVE	80
CONCLUSION AND RECOMMENDATIONS	80
5.1 Conclusion	80
5.2 Contribution to Knowledge	81
5.3 Recommendation for Future Research	81
REFERENCES	83
APPENDIX A	101
APPENDIX B	101
APPENDIX C	102
APPENDIX D	102
APPENDIX E	103

LIST OF FIGURES

TITLE OF FIGURES FIGURES PAGES 2.1 Neem leaf 17 2.2 Structure of Gedunin 21 2.3 Structure of Azadirachtin 22 2.4 Structure of nimbolide 23 2.5 Microwave-Assisted Extraction process 28 2.6 Schematic representation of liquid-liquid extraction process 30 2.7 Various solvents of extraction 36 2.8 Typical ternary phase diagram 37 Ternary diagram for nimbolide 59 4.1a 4.1b Experimental tie lines for (water-nimbolide-n-hexane) system 60 4.2a Ternary diagram for gedunin 60 4.2b Experimental tie lines for (water + gedunin + n-hexane) system 61 4.3a Ternary diagram for Azadirachtin extraction 61 4.3b Experimental tie lines for (water + azadirachtin + n-hexane) system 62 4.10 Othmer-Tobias plots for the ternary system 68 4.11 Estimated versus predicted plots for mass fraction (M/M) of (n-hexane + nimbolide + water) ternary system in the aqueous phase in Aspen plus. (a)water (b) n-hexane (c) nimbolide 69

4.12	Estimated versus predicted plots for mass fraction (M/M) of (n-hexane+	
	nimbolide + water) ternary system in the organic phase in Aspen plus.	
	(a)water (b) n-hexane (c) nimbolide	70
4.13	Estimated versus predicted plots for mass fraction (M/M) of (n-hexane +	
	Azadirachtin + water) ternary system in the aqueous phase in Aspen plus.	
	(a)water (b) n-hexane (c) Azadirachtin	71
4.14	Estimated versus predicted plots for mass fraction (M/M) of (n-hexane +	
	azadirachtin + water) ternary system in the Organic phase in Aspen plus.	
	(a)water (b) n-hexane (c) azadirachtin	72
4.15	Estimated versus predicted plots for mass fraction (M/M) of (n-hexane	
	+ gedunin + water) ternary system in the aqueous phase in Aspen plus.	
	(a)water (b) n-hexane (c) gedunin	73
4.16	Estimated versus predicted plots for mass fraction (M/M) of (n-hexane	
	+ gedunin + water) ternary system in the organic phase in Aspen plus.	
	(a)water (b) n-hexane (c) gedunin	74

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
2.1	Vernacular names	13
2.2	Neem Active ingredients	15
2.3	Solvents for extraction and polarity	33
2.4	Reviewed literature and gaps	46
3.1	Details of chemicals used for the study	48
4.1	Distribution coefficients (D) and Separation factor (S) values for the ternar	У
	system	63
4.2	Othmer-Tobias equation parameters a, b and regression coefficients, R^2	67
4.3	NRTL binary interaction parameter for the studied ternary system.	75
4.4	UNIQUAC binary interaction parameter for the studied ternary system	76

LIST OF PLATES

PLATES	TITLE OF PLATES	PAGES
3.1	Neem Tree on Covenant University Campus	49
3.2	(A) Gas Chromatogram equipped (B) Flame Ionization detector and Agiler MS capillary column.	nt 51
3.3	Extraction for characterization	52
4.1	Mixture preparation	58

LIST OF ABBREVIATIONS

FDA	Food and Development Association
WHO	World Health Organization.
ACT	Active Ingredients in Artemether
GMP	Good Manufacturing Practice
SA	Structural Alerts
SFE	Supercritical Fluid Extraction
QSAR	Quantitative Structural-Activity Relationship
EC	Effective Constituents
ТМ	Traditional Medicine
WM	Western Medicine
NRTL	Non -random two liquids
UNIFAC	UNIQUAC Functional-group Activity Coefficient
UNIQUAC	Universal Quasichemical activity Coefficient
LLE	Liquid-liquid Extraction
GC	Gas Chromatography
FID	Flame Ionization Detector
BIP	Binary Interaction Parameter
RMSD	Root Mean Square Deviation

ABSTRACT

Limonoids from Azadirachta indica (also known as dongoyaro in Nigeria) leaves are separated using features of phase equilibrium including partition coefficients pressure, temperature, compositions, and partition coefficients when constructing chemical separation operations for limonoids from the leaves. In order to determine the thermodynamic properties, the ternary liquidliquid behaviors in the system (n-hexane + limonoids + water) at 323.15 K and 373.15 K, and constant pressure of 101.3 kPa was modeled and simulated. Comparisons were made between the effects of extraction and the system's calculated partition coefficient (D) and selectivity (S). The Othmer-Tobias correlation was employed to evaluate the regularity and dependability of empirical liquid-liquid equilibrium (LLE) data. The empirical data were compared utilizing the Non-Random Two-Liquids (NRTL) and Universal Quasichemical (UNIQUAC) models, whereas the binary interaction parameters (BIPs) specified for each model were derived utilizing regression in the ASPEN plus software. The separation factor values which ranged from 0.9110 to 18.2177 demonstrated to be temperature and concentration of limonoid dependent. In accordance with the Othmer-Tobias equation, the authenticity of the LLE data had a regression coefficient greater than 0.8553. Equally, the NRTL model was the best fit for the prediction of the extraction of limonoids from neem leaves since the Root Mean Square Regression Deviation (RMSD) values between the experimental and calculated LLE data of less than 0.1847 percent as compared to 0.7501 percent using UNIQUAC model. The results obtained can be used in pharmaceutical industries in the design of the extraction column to produce high purity limonoids for the treatment of malaria which will influence the design, procedure, and enhancement of the process.

Keywords: Thermodynamic liquid-liquid equilibrium, Azadirachta indica, Aspen Plus, NRTL, UNIQUAC