CO₂ CAPTURE FROM A POST-COMBUSTION PROCESS INVOLVING A NOVEL HYBRID ADSORBENT-ABSORBENT SYSTEM

VERSHIMA, DENEN ASHIEKAA (12CF013587)

JULY, 2022

CO₂ CAPTURE FROM A POST-COMBUSTION PROCESS INVOLVING A NOVEL HYBRID ADSORBENT-ABSORBENT SYSTEM

BY

VERSHIMA, DENEN ASHIEKAA (12CF013587) B.Eng. Chemical Engineering, Covenant University, Ogun State

A DISSERTATION SUBMITTED TO SCHOOL OF POSTGRADUATE STUDIES, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.Eng.) DEGREE IN CHEMICAL ENGINEERING IN THE DEPARTMENT OF CHEMICAL ENGINEERING, COLLEGE OF ENGINERRING, COVENANT UNIVERSITY

JULY, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Masters of Engineering in Chemical Engineering in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State.

Mr.Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, VERSHIMA, DENEN ASHIEKAA (12CF013587), declares that this research was carried out by me under the supervision of Dr. Samuel E. Sanni of the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data, and scholarly information used in this dissertation are duly acknowledged.

VERSHIMA, DENEN ASHIEKAA

Signature and Date

v

CERTIFICATION

We certify that this dissertation titled "CO₂ CAPTURE FROM A POST-COMBUSTION PROCESS INVOLVING A NOVEL HYBRID ADSORBENT-ABSORBENT SYSTEM" is the original research work carried out by VERSHIMA, DENEN ASHIEKAA (12CF013587) in the Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Samuel E. Sanni of the Department of Chemical Engineering. We have examined and found this research work acceptable as part of the requirements for the award of the degree of Master of Engineering in Chemical Engineering.

Dr. Samuel E. Sanni (Supervisor)

Prof. Vincent E. Efeovbokhan (Head of Department)

Prof. Kayode G. Latinwo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to God Almighty.

ACKNOWLEDGEMENTS

All the praise and adoration belong to GOD Almighty for my existence and for his mercy over me.

I would like to acknowledge the chancellor and Board of regent of Covenant university, Dr. David O. Oyedepo. Furthermore, I would like to appreciate the effort of my parents Mr. and Mrs. Vershima for their financial support. My sincere gratitude goes to my supervisor Dr. Samuel. E. Sanni. for his invaluable contribution to my research work. I also appreciate the Faculty and Staff of Chemical Engineering department Covenant University.

TABLE OF CONTENTS

ACCEPTANCE	III		
DECLARATION	IV		
CERTIFICATION	V		
DEDICATION	VI		
ACKNOWLEDGEMENTS	VII		
TABLE OF CONTENTS	VIII		
LIST OF FIGURES	X		
LIST OF TABLES	XII		
LIST OF PLATES	XV		
LIST OF ABBREVIATIONS	XVII		
ABSTRACT	XVIII		
CHAPTER ONE	1		
INTRODUCTION	1		
1.1 Background of the Study	1		
1.2 Statement of the Problem	3		
1.3 Aim and Objectives of the Study	5		
1.4 Justification of the Study	5		
1.5 Scope of the Study			
CHAPTER TWO	7		
LITERATURE REVIEW	7		
2.1 Carbon Dioxide Capture	7		
2.2 Sources of CO ₂ Emissions	9		
2.3 Post-combustion CO ₂ Capture	10		
2.4 Gaps in literature	30		

CHAPTER THREE	
METHODOLOGY	33
3.1 Materials	33
3.2 Equipment/Apparatus	33
3.3 Experimental Procedures	34
CHAPTER FOUR	58
RESULTS AND DISCUSSIONS	58
4.1 Results	58
4.2 Discussions	92
CHAPTER FIVE	111
CONCLUSION AND RECOMMENDATION	111
5.1 Conclusion	111
5.2 Recommendation	112
5.3 Contribution to Knowledge	112

REFERENCES

113

LIST OF FIGURES

FIGU	RES LIST OF FIGURES	PAGES
2.1:	An Absorption System	13
2.2:	A Setup for CO ₂ Separation from a Mixture of CO ₂ /N ₂ using HKUST-1	
	and MIL 101(Cr) Metal–Organic Frameworks	20
2.3:	Schematic Representation of a Composite Membrane Material	23
2.4:	A Two-Step Membrane CO ₂ Capture System	25
2.5:	A Traditional Chemical Loop Combustion Process	27
4.1:	pH and Concentration of The Base Solution that escaped the Membranes	
	with Different GO Weight Concentrations in the Adsorber	80
4.2:	pH and Concentration of The Base Solution that escaped the Membranes	
	with Different MN Weight Concentrations in The Adsorber	81
4.3:	pH and Concentration of The Base Solution that escaped the Membranes	
	with Different PN Weight Concentrations in the Adsorber	81
4.5:	Adsorptive Capacity of the Membrane with	
	Different GO Weight Concentrations	82
4.6:	Adsorptive Capacity of the Membrane with Different	
	MN Weight Concentrations	83
4.7:	Adsorptive Capacity of the Membrane with Different	
	PN Weight Concentrations	83
4.8:	Adsorptive Capacity of the Hybrid Membranes	84
4.9:	FTIR Result of the Base Solution that escaped the Clear Membrane	84
4.10:	FTIR Result of the Base Solution that escaped the Pristine Membrane	85
4.11:	FTIR Result of the Base Solution that escaped the	
	30 Wt.% GO – 20 Wt.% PN Membrane	85
4.12:	FTIR Result of the Base Solution that escaped the	
	50 Wt.% GO – 40 Wt.% MN Membrane	86
4.13:	Size Distribution Result for Graphene Powder	86
4.14:	SEM-EDX Image of the Pristine Membrane	87

4.15:	SEM-EDX Image of the 30 Wt.% - 20 Wt.% PN Membrane	87
4.17:	Product-Spectra of Absorbance-Time Variation of the Base Solution leaving	
	the Adsorber without a Cellulose Acetate Membrane	90
4.18:	Product-Spectra Of Absorbance-Time Variation of the Base Solution leaving	
	an Adsorber Aided by a Cellulose Acetate Membrane	91

LIST OF TABLES

TABL	ES TITLE OF TABLES	PAGES
2.1	Different Types of Membranes used for CO ₂ Capture	30
2.2:	Types of Ionic Liquids used for CO ₂ Capture	31
3.1:	Heating Reactor Tank Specifications and Measured Values	40
3.2:	Adsorber Tank Specifications and Measured Values	41
3.3:	Desorber Tank Specifications and Measured Values	42
4.1:	Membrane Surface Area and Volume	59
4.2:	pH and Concentration of the Clear Solution	60
4.3:	pH and Concentration of the Base Solution that escaped the Pristine	
	Membrane in the Adsorber	61
4.4:	pH and Concentration of the Base Solution that escaped the 10 Wt.%	
	GO - Membrane in the Adsorber	61
4.5:	pH and Concentration of the Base Solution that escaped the 20 Wt.%	
	GO Membrane in the Adsorber	62
4.6:	pH and Concentration of the Base Solution that escaped the 30 Wt.%	
	GO Membrane in the Adsorber	62
4.7:	pH and Concentration of the Base Solution that escaped the 40 Wt.%	
	GO Membrane in the Adsorber	63
4.8:	pH and Concentration of the Base Solution that escaped the 50 Wt.%	
	GO Membrane in the Adsorber	63
4.9:	pH and Concentration of the Base Solution that escaped the 10 Wt.% MN	
	Membrane in the Adsorber	64
4.10:	pH and Concentration of the Base Solution that escaped the 20 Wt.% MN	
	Membrane in the Adsorber	64
4.11:	pH and Concentration of the Base Solution that escaped the 30 Wt.% MN	
	Membrane in The Adsorber	65
4.12:	pH and Concentration of the Base Solution that escaped the 40 Wt.% MN	
	Membrane in The Adsorber	65

4.13:	pH and Concentration of the Base Solution that escaped the 50 Wt.% MN	
	Membrane in the Adsorber	66
4.14:	pH and Concentration of the Base Solution that escaped the 10 Wt.% PN	
	Membrane in the Adsorber	66
4.15:	pH and Concentration of the Base Solution that escaped the 20 Wt.% PN	
	Membrane in the Adsorber	67
4.16:	pH and Concentration of the Base Solution that escaped the 30 Wt.% PN	
	Membrane in the Adsorber	67
4.17:	pH and Concentration of the Base Solution that escaped the 40 Wt.% PN	
	Membrane in the Adsorber	68
4.18:	pH and Concentration of the Base Solution that escaped the 50 Wt.% PN	
	Membrane in the Adsorber	68
4.19:	pH and Concentration of the Base Solution that escaped the	
	30 Wt.% GO- 20 Wt.% PN Membrane in the Adsorber	69
4.20:	pH and Concentration of the Base Solution that escaped the	
	50 Wt.% GO- 40 Wt.% MN Membrane in the Adsorber	69
4.21:	Adsorptive Capacity of the Pristine Membrane	70
4.22:	Adsorptive Capacity of the 10 Wt.% GO Membrane	71
4.23:	Adsorptive Capacity of the 20 Wt.% GO Membrane	71
4.24:	Adsorptive Capacity of the 30 Wt.% GO Membrane	72
4.25:	Adsorptive Capacity of the 40 Wt.% GO Membrane	72
4.26:	Adsorptive Capacity of the 50 Wt.% GO Membrane	73
4.27:	Adsorptive Capacity of the 10 Wt.% MN Membrane	73
4.28:	Adsorptive Capacity of the 20 Wt.% MN Membrane	74
4.29:	Adsorptive Capacity of the 30 Wt.% MN Membrane	74
4.30:	Adsorptive Capacity of the 40 Wt.% MN Membrane	75
4.31:	Adsorptive Capacity of the 50 Wt.% MN Membrane	75
4.32:	Adsorptive Capacity of the 10 Wt.% PN Membrane	76
4.33:	Adsorptive Capacity of the 20 Wt.% PN Membrane	76
4.34:	Adsorptive Capacity of the 30 Wt.% PN Membrane	77
4.35:	Adsorptive Capacity of the 40 Wt.% PN Membrane	77

4.36:	Adsorptive Capacity of the 50 Wt.% PN Membrane	78
4.37:	Adsorptive Capacity of the 30 Wt.% GO - 20 Wt.% PN - Membrane	78
4.38:	Adsorptive Capacity of the 50 Wt.% GO - 40 Wt.% MN - Membrane	79
4.39:	Carbon Capture Efficiency (30 Wt.% GO - 20 Wt.% PN - Membrane)	79
4.40:	Carbon Capture Efficiency (50 Wt.% GO - 40 Wt.% MN - Membrane)	80
4.41:	Carbon Capture Efficiency (30 Wt.% GO - 20 Wt.% PN - Membrane)	84

LIST OF PLATES

PLATES	LIST OF PLATES	PAGES
3.1:	Mixture of Ammonium Chloride and Methanal in the Heating Set-Up	34
3.2:	Mixture Containing Methylammonium Chloride	35
3.3:	Methylammonium Nitrate Solution	36
3.4:	Methylammonium Nitrate Crystals	36
3.5:	Mixture of Ammonium Chloride and Propanal	37
3.6:	Heating of the Mixture.	37
3.7:	Mixture Propanal and Ammonium Chloride	38
3.8:	Mixture Containing Propylammonium Chloride	38
3.9:	Mixture of Nitric Acid and Propylammonium Chloride	39
3.10:	Propylammonium Chloride Solution	39
3.11:	Fabricated Combustor- Adsorber – Desorber System	42
3.12:	Aerial View of the Membrane Cartridge	43
3.13:	Mixture of Acidic Solutions	44
3.14:	Addition of Kmno ₄ and Graphite Powder	44
3.15:	Mixture after 6 Hours Of Stirring	45
3.16:	Mixture after the Addition Of Hydrogen Peroxide	45
3.17:	Mixture after the Addition of Hcl and Distilled Water	46
3.18:	Mixture after Washing with Distilled Water and Hcl	46
3.19:	Solution Containing Graphene Oxide Powder	47
3.20:	Graphene Oxide Powder	47
3.21:	Mixture Containing Cotton Wool	48
3.22:	Dissolved Cotton Wool in the Solution	48
3.23:	Precipitated Cellulose Acetate	49
3.24:	Filtrated Cellulose Acetate Material	49
3.25:	Cellulose Acetate Material after Drying	50
3.26:	Cellulose Acetate Powder	50
3.27:	Cellulose Acetate Dissolved in Solvent Mixture	51

3.28:	Casting of the Prepared Solvent Mixture	51
3.29:	Synthesized Cellulose Acetate Membrane	52
3.30:	Drying and Processing of Napier Grass	57
3.31:	Combustion of the Napier Grass and Trapping of CO ₂ using Ca(OH) ₂ Solution	57

LIST OF ABBREVIATIONS

ANG	Associated Natural Gas
CCS	Carbon capture and storage
CNG	Natural gas vehicles
COP21	21st Conference of Parties
CI	Climate impact
CST	Concentrated solar thermal energy
DEA	Diethanolamine
DIPA	Diisopropylamine
GDP	Gross domestic product
GHG	Greenhouse gasses
Gt	Gigatonne
GO	Graphene oxide
IL	Ionic liquids
KMnO ₄	Potassium permanganate
MEA	Monoethanolamine
MN	Methylammonium nitrate
MOF	Metal-organic framework
Mt	Megatonne
PN	Propylammonium nitrate
PVA	poly(vinyl alcohol)
PCC	Post-combustion capture
PAMAM	Poly(amidoamine)
SFSI	Strategic Fuel Substitution Initiatives in Nigeria
UNFCCC	United Nations Framework Convention on Climate Change

ABSTRACT

Due to the global menace caused by carbon emissions there have been concerted efforts by researchers to search alternative ways of curbing issues arising (environmental pollution, health related diseases, risks to aquatic life etc.) from such emissions. In today's world, CO₂ has become one of the major gaseous pollutants that has attracted significant interest as a result of man's consistent use of energy from fossils and other human activities. The traditional ways of controlling carbon emissions are not very efficient and somewhat expensive, hence the need to search alternative solutions. The research is aimed at capturing carbon from a post-combustion using an adsorbent- absorbent system. Graphene oxide was synthesized using a modified hummers method. Ionic liquids (methylammonium nitrate and propylammonium nitrate) were synthesized by dissolving ammonium chloride in methanal and propanal. Cellulose acetate membrane was then synthesized using the casting method. The cellulose acetate membrane was doped with the ionic liquids and graphene oxide for carbon capture. Ca(OH)₂ solution was prepared to test for the presence of CO₂ in the experimental process. A combustor- adsorber -desorber system was fabricated to capture CO₂ in a post-combustion process. The combustible material used was Napier grass. 600 g of Napier grass was fed into the system and heated at 400 °C. At the exhaust pipe of the adsorber, the bottle containing the $Ca(OH)_2$ solution was fitted in order to confirm if the flue gas leaving the system contains CO₂ and the amount of CO₂ leaving the process. This helped to determine the amount of CO₂ captured by the system. The experiment was monitored for 50 minutes and at 10-minute intervals, a syringe was used to draw out 25 cm³ samples for analysis. The maximum adsorption capacity recorded for the 30 wt.% GO - 20 wt.% PN - membrane was 1.32753 $\left(\frac{mol.CO_2}{dm^3.membrane}\right)$ which was considerably high compared to that in literature. The results showed carbon capture efficiency of 80 % for the membrane doped with ionic liquids/graphene oxide. These results confirmed the possibility of using the membrane doped with ionic liquids/graphene oxide for efficient and effective carbon capture.

Keywords: Adsorption; Biogas; Biomass; Carbon capture; Membrane-Ionic liquid system; Post-combustion