EXPERIMENTAL AND NUMERICAL ASSESSMENT OF EXTERNALLY BONDED AND NEAR-SURFACE MOUNTED NATURAL FIBRE COMPOSITES ON REINFORCED CONCRETE BEAMS

> EFFIONG, JOHN UDUAK (20PCI02081)

> > AUGUST, 2022

EXPERIMENTAL AND NUMERICAL ASSESSMENT OF EXTERNALLY BONDED AND NEAR-SURFACE MOUNTED NATURAL FIBRE COMPOSITES ON REINFORCED CONCRETE BEAMS

BY

EFFIONG, JOHN UDUAK (20PCI02081) B.Eng Civil Engineering, Cross River University of Technology, Calabar

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE **REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER** OF ENGINEERING (M.ENG) IN CIVIL ENGINEERING IN THE DEPARTMENT OF CIVIL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Civil Engineering in the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **EFFIONG, JOHN UDUAK (20PCI02081)** declare that this research was carried out by me under the supervision of Professor Anthony N. Ede of the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledge.

EFFIONG, JOHN UDUAK

Signature and Date

CERTIFICATION

We certify that this dissertation titled "EXPERIMENTAL AND NUMERICAL ASSESSMENT OF EXTERNALLY BONDED AND NEAR-SURFACE MOUNTED NATURAL FIBRE COMPOSITES ON REINFORCED CONCRETE BEAMS" is an original work carried out by EFFIONG, JOHN UDUAK (20PCI02081), in the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Professor Anthony N. Ede. We have examined and found this research work acceptable as part of the requirements for the award of a Master of Engineering (M.Eng) Degree in Civil Engineering.

Prof. Anthony N. Ede (Supervisor)

Prof. Anthony N. Ede (Head of Department)

Prof. Obanishola M. Sadiq (External Examiner) Signature and Date

Signature and Date

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate studies)

Signature and Date

DEDICATION

I dedicate this research work to the Almighty God, the source and giver of knowledge and wisdom, whose sustenance kept through this program. From start to finish, He has sustained me, been the source of strength, and lifted my spirit as I worked on my dissertation.

I also dedicate this research work to my beloved family. I am deeply grateful to my loving parents, and siblings whose words of motivation, wisdom and encouragement taught me the value of perseverance and hard work. Thank you very much.

ACKNOWLEDGEMENT

The successful completion of this dissertation would not have been possible without the invaluable assistance, sacrifices, motivation, encouragement, and inspiration of a number of different people and organizations. For this reason, I would want to express my gratitude to everyone who has offered their support and aid in a wide variety of different ways.

My utmost thanks go to the Almighty God for the gift of life, strength, opportunity, and grace to finish this dissertation.

I would want to acknowledge and express my gratitude to Dr. David O. Oyedepo, the Chancellor of Covenant University, for the spiritual atmosphere and vision. I would also like to express my gratitude to the management team of Covenant University, which is capably led by the Vice Chancellor, Professor Abiodun H. Adebayo, the Registrar, Mr. Emmanuel Igban, the Dean of SPS, Professor Akan B. Williams, the Sub-dean, Dr. Emmanuel O. Amoo, and the Dean of the College of Engineering, Professor David Olukanni. I'd want to take this opportunity to thank Professor Anthony Ede, my supervisor and Head of Department, Civil Engineering who does a fantastic job of leading the department and providing me with insightful direction and unwavering support during this process. I owe him a tremendous obligation since his insightful critique helped remove the fog, made certain that I put in the appropriate work, and ensured that I remained consistently focused. It was a great opportunity for me to work under his direction, and despite the limited time we had, he took on each duty required of a supervisor to direct my study.

I will also like to show gratitude to the Post Graduate Coordinator of the department, Dr. Gideon Bamigboye for the administrative support, helpful assistance and advise throughout the course of this programme, Prof. David Omole, Dr. Paul Awoyera, Dr. Ofuyatan Olatokunbo, Dr. Oluwarotimi Olofinnade, Dr. Solomon Oyebisi, Dr. Mark, Engr. Abimbola Odetoyan, Engr. John Oluwafemi, Engr. Sanni, Engr. Jolayemi Joshua and all other great members of the Department of Civil Engineering, I remain grateful for all the support and encouragement all through my program.

In particular, I want to express my gratitude to my colleagues and friends Chukwunonyenim Wilson, Michael Aluko, Jonah Ebuka, Ogaga Odokuma and the rest of my colleagues and friends for the continuous encouragement and support they have provided. My sincere gratitude goes out to my friend Etah Boniface for all of his support and encouragement while I was working on this program.

In conclusion, I would want to express my deepest gratitude and admiration to my family, who were never far from my thoughts or my heart while I was on this adventure. My father and mother, together with my three siblings, Samuel, Esther, and Elizabeth, have always been a reliable source of support, motivation, and fortitude for me.

Thank you all

TABLE OF CONTENTS

PAGES

ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION A CUNOMULED CEMENT	vi
ACKNOWLEDGEMEN I TARLE OF CONTENTS	VII iv
LIST OF FIGURES	xvi
LIST OF TABLES	xvii
LIST OF PLATES	xviii
LIST OF ABBREVIATIONS	xix
ABSTRACT	XXI
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.3 Aim	4
1.4 Objectives	4
1.5 Justification of Study	5
1.6 Scope	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Utilization of NFRP in Engineering Construction	7
2.2 Externally bonded natural FRP strengthening systems employed in previous res	earch14
2.2.1 Flexural strengthening applications	14
2.2.2 Shear applications	21
2.2.3 Blast Mitigation	22
2.2.4 Torsion applications	23
2.3 Near-surface Mounted FRP Strengthening techniques adopted in past research	24

2.3 Near-surface Mounted FRP Strengthening techniques adopted in past research	
2.3.1 Flexural applications	24
2.3.2 Resilience to Dynamic Loading condition	26
2.3.3 Bond behaviour	26
2.3.4 Application in Shear Strengthening	28
2.3.5 Application Seismic Loading Conditions	29
2.4 Durability performance of NFRP-enhanced concrete beam structures	30
2.5 Findings and Relevant Gaps in Knowledge	

CHAPTER THREE: METHODOLOGY		
3.1 Experimental Programme		
3.1.1 Beam design and fabrication	32	
3.1.2 Kenaf Fibre reinforcement Preparation	36	
3.1.3 Strengthening arrangement	37	
3.1.4 Bonding of NFRP composite to Beam	39	
3.1.5 Four-point bending test setup	39	
3.2 Numerical Programme	41	
3.2.1 Elements	42	
3.2.2 Material Models	42	
CHAPTER FOUR: RESULTS AND DISCUSSIONS	47	
4.1 Introduction	47	
4.2 Concrete Compressive Strength Test Results	47	
4.3 Flexural Test results on Strengthened Beam Configurations		
4.4 Experimental and Numerical Results Comparison	50	
4.5 KFRP Beam Failure modes and Crack Patterns	51	
4.6 Comparisons with Previous Studies	53	
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS	55	
5.1 Summary	55	
5.2 Conclusions	55	
5.3 Contribution to knowledge	56	
5.4 Recommendations	56	

REFERENCES

58

LIST OF FIGURES

FIGURES TITLE OF FIGURES

PAGES

1.1	Building collapses in Nigeria from 2009 – 2019	5
2.1	Composition of FRP composites	8
2.2	Comparison of the costs of natural and synthetic fibres	9
2.3	Comparison of natural and synthetic fibres in terms of cost, durability, and	
	environmental impact	10
2.4	Flexural strengthening systems	13
2.5	Sequence of best hybrid FRP stacking in flexure with 2.3 mm total thickne	ess of
	natural fibres	15
2.6.	Groove sizing for NSM FRP enhancement approaches	28
3.1	Beam Reinforcement Details	32
3.2	Rectangular stress block for a double-reinforced concrete beam	33
3.3	RC beam Specimens Configuration	38
3.4	Schematic Diagram show four-point load test setup for EB beam configuration	n 40
3.5	Schematic Diagram show four-point load test setup for NSM b	beam
	configuration	40
3.6	Abaqus concrete beam	42
3.7	Abaqus steel reinforcements	43
3.8	Abaqus kenaf FRP composite	45
4.1	Load displacement plot for strengthened beams vs control	49
4.2	Comparison of the best strengthened beams' experimental and computational re	esults
	using the EB and NSM system, and the control beam	51
4.3	Comparison of parallel studies based on experimental results	54

LIST OF TABLES

TABLES TITLE OF TABLES

2.1	Energy input of FRP composition	10
2.2	Mechanical properties of selected natural fibres	11
2.3	Comparison of RC beam flexural strengthening results adopting EB natural	FRPs
		16
2.4	Compared results of RC beam shear strengthening adopting EB natural compo	osites
		22
3.1	Mix proportion of the KFRP laminate	37
3.2	Properties of the polymer matrix components	37
3.3	Adhesive mechanical specifications	39
3.4	Properties of steel rebars	44
3.5	KFRP Laminate Orthotropic Properties based on Abaqus Global Orientation	46
4.1	Compressive Strength Test Results for concrete	47
4.2	Flexural Strength Test Results for concrete	48

LIST OF PLATES

PLATES	TITLE OF PLATES	PAGES
1.1	Typical examples of Natural plant fibres	3
2.1	HCP retrofitting procedure with dowels and chemical anchor into RC teste	ed sample
		29
3.1	Images showing all 6 beams of the same geometry and steel reinforcing	35
3.2	Compressive strength test setup	35
3.3	Kenaf fibre preparation	36
3.4	Grooving on RC beams	38
3.5	Images showing plate and strip dimensions	39
3.6	Four-point bending test setup	41
4.1	Control beam failure mode and crack patterns	51
4.2	K-E-2 failure mode and crack patterns	52
4.3	K-E-4 failure mode and crack patterns	52
4.4	K-N-1-2 failure mode and crack patterns	52
4.5	K-N-2-2 failure mode and crack patterns	52
4.6	K-N-2-4 failure mode and crack patterns	52

LIST OF ABBREVIATIONS

- RC Reinforced Concrete
- EB Externally Bonded
- NSM- Near-Surface Mounted
- NFRP Natural Fibre Reinforced Polymer
- KFRP Kenaf Fibre Reinforced Polymer
- FRP Fibre Reinforced Polymer
- LDPE Low Density Polyethylene
- HDPE High Density Polyethylene
- ACI American Concrete Institute
- EBR Externally Bonded Reinforcement
- NaOH Sodium Hydroxide
- CFRP Carbon Fibre Polymer
- GFRP Glass Fibre Reinforced Polymer
- SFRP Sisal Fibre Reinforced Polymer
- SFRC Sisal Fibre Reinforced Concrete
- BFRP Basalt Fibre Reinforced Polymer
- ECC Engineered Cementitious Composite
- JFRP Jute Fibre Reinforced Polymer
- IHSCC-CA Innovative High-strength Self-compacting Non-polymer Cementitious Adhesive
- SNSM Side Near Surface Mounted
- FEM Finite Element Method
- HCP Hybrid Composite Plate
- ASTM American Society for Testing and Materials

UTM – Universal Testing Machine

ABSTRACT

The demand for sustainable and accessible materials is on the increase with drive towards providing and strengthening physical infrastructures to guarantee a more resilient, and sustainable environment. A substantial survey of literature has revealed that most research have concentrated on enhancing reinforced concrete (RC) beams adopting the externally bonded (EB) strengthening or near-surface mounted (NSM) techniques employing synthetic fiber reinforced polymer-based materials. A few studies have found that the use of natural fiber reinforced polymer (NFRP) composites is advantageous as a potential substitute for the utilization of conventional synthetic fibre reinforced polymer (FRP) composites for structural strengthening. The comparison of EB and NSM techniques using NFRP composites is very underexplored. Six beams were cast, and they underwent testing as part of the experiment. Flexural failure was the primary mechanism of failure for these beams. The findings of the empirical investigation show that the NSM kenaf FRP configuration of K-N-2-4 provided the best structural strengthening by increasing the load-carrying capacity by 163.64% and improving stiffness before deformation. This further demonstrates the kenaf FRP composite as a viable option in strengthening RC beams. The un-strengthened and strengthened RC beams were modelled numerically on Abaqus FEA software to correlate the empirical findings, and the numerical analysis' findings on the beams' load-deflection response, yielding load, and crack propagations were in conformity with the results of the experimental research.

Keywords: Kenaf Fibre Reinforced Polymer (KFRP); Externally Bonded Fibre Reinforced Polymer; Near-Surface Mounted Fibre Reinforced Polymer; Failure Mechanisms; Flexural Strengthening