
 

Block Solver for Multidimensional Systems of Ordinary Differential 

Equations 
 

JIMEVWO GODWIN OGHONYON 

Department of Mathematics, Covenant University, 

Km 10. Idiroko, Canaan Land, 

Ota, Ogun State, NIGERIA  

https://covenantuniversity.edu.ng/ 

 

SOLOMON ADEWALE OKUNUGA 

Department of Mathematics, University of Lagos 

Lagos State, NIGERIA 

https://unilag.edu.ng 

 

PETER OLUWATOMI OGUNNIYI 

Department of Mathematics, Covenant University 

Km 10. Idiroko, Canaan Land 

Ota, Ogun State, NIGERIA  

https://covenantuniversity.edu.ng/ 

 
Abstract- This research study aimed at developing block solver for multidimensional systems (BSMS) of ordinary 

differential equations. This method will be formulated via interpolation and collocation techniques with 

multinomial as the basis function approximate. The block solver has the capacity to utilize each principal local 

truncation errors to generate the convergence criteria that will ensure convergence. Some theoretical properties will 

be stated. The process for executing the block solver will be done via the idea of the convergence criteria 

introduced. Step by step implementation algorithm will be specified. Some selected model applications will be 

worked out and a suitable step size will be determined to satisfy the convergence criteria in order to enhance the 

accuracy and efficiency of the method. The implementation of BSMS is coded in Mathematica and executed under 

the platform of Mathematica Kernel 9. 
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1 Introduction 
A large number of physical occurrences are framed 

with more than one equation and take more than one 

subordinate variable. For instance, whenever we intend 

to find out the population of two acting population like 

foxes and rabbit, we will accept two subordinate 

variables which constitute the two populations where 

these populations rely on one autonomous variable 

which constitutes time. Occurrences such as this give 

rise to systems of differential equations. See [1] for 

details. 

Consider the initial value problem for a system of 𝑟 

first-order differential equations which possess the 

general class of 

𝑌1
′(𝑥) = 𝑓1(𝑥, 𝑌1(𝑥),… , 𝑌𝑟(𝑥)),  𝑌1(𝑥0) = 𝑌1,0, ⋮  

      (1) 

𝑌𝑟
′(𝑥) = 𝑓1(𝑥, 𝑌1(𝑥),… , 𝑌𝑟(𝑥)),  𝑌𝑟(𝑥0) = 𝑌𝑟,0. 

Seeking for the solution functions 𝑌1(𝑥), … , 𝑌𝑟(𝑥) on 

some time-interval defined at 𝑥0 ≤ 𝑥 ≤ 𝑏. 

The general class of (1) is cumbersome to figure 

out, and it is not easy to determine the system when 

writing a computer programming. The class of (1) 

constitute the analytical solution and the differential 
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equations by employing column vectors. This will be 

announce as  

𝑌(𝑥) = [
𝑌1(𝑥)
⋮

𝑌𝑟(𝑥)
],  𝑌0 = [

𝑌1,0
⋮
𝑌𝑟,0

],  

 𝑓(𝑥, 𝑦) = [
𝑓1(𝑥, 𝑦1, … 𝑦𝑟)

⋮
𝑓𝑟(𝑥, 𝑦1, … 𝑦𝑟)

]     (2) 

with 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑟]
𝑇.  

Then (1) will be seen as  

𝑌′(𝑥) = 𝑓(𝑥, 𝑌(𝑥)),   𝑌(𝑥0) = 𝑌0. (3) 

 

The notational system of (2) is define as  

𝑓(𝑥, 𝑦) = 𝐴𝑦 + 𝐺(𝑥),  𝑦 = [𝑦1, 𝑦2]
𝑇. [1, 5] 

 

Definition: A system of ordinary differential equations 

is a concurrent set of equations that takes two or more 

subordinate variables that rely on one autonomous 

variable. A solution of the system is a set of functions 

that meets each equation on some time interval I [1]. 

 

Theorem 1: Assume that each of the functions 

𝑓1(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟), 𝑓2(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟), , 

… , 𝑓𝑟(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟)  and the partial derivatives 
𝜕𝑓1

𝜕𝑥1
,
𝜕𝑓2

𝜕𝑥2
, … ,

𝜕𝑓𝑛

𝜕𝑥𝑛
 are continuous in a region 𝑅 

establishing the point (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟) . Then, the 

initial-value problem 

{
 
 

 
 

𝑦1
′ = 𝑓1(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟)

𝑦2
′ = 𝑓2(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟) 

⋮
𝑦𝑟
′ = 𝑓𝑟(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑟)

𝑦1(𝑥0) = 𝑡1, … , 𝑦𝑟(𝑥0) = 𝑡𝑟

  (4) 

has a unique analytical solution 

  {

𝑦1 = ∅1(𝑥)

𝑦2 = ∅2(𝑥)
⋮

𝑦𝑟 = ∅𝑟(𝑥)

        (5) 

on the interval 𝐼 establishing 𝑥 = 𝑥0 [1-2, 15-16]. 

 

The system of initial value problems come into 

existence by nature from any multidimensional system 

or any system that possess more than one variable 

quantity associated in a single model equation. Each 

one of these variable quantities can be constituted by a 

mathematical function of a single independent variable 

quantity (usually time) [14]. 

 

Theorem 2: Let 𝑓: [0,1] → ℝ be a continuous function 

and for each ℰ > 0 there exist a multinomial function 𝑃 

such that for all 𝑥 ∈ [0, 1], |𝑓(𝑥) − 𝑃(𝑥)| < 𝜀 . Very 

importantly, for whatever such 𝑓 , there exist a 

succession 𝑃𝑛  of multinomial such that 𝑃𝑛 → 𝑓 

uniformly on [0, 1]. [6] 

Authors have suggested possible solutions to 

handle (1). Some of these methods include the 

continuous block backward differentiation formula for 

solving stiff ODEs designed by [2]. This CBBDF 

requires no starting values and implement implicit 

block method for solving stiff ODEs. Block method 

implemented by CBBDF has been well emphasized as 

an advantage over other methods for ensuring better 

efficiency and accuracy.   Nevertheless, the step size 

variation and tolerance level were not implemented. 

The extended continuous block backward 

differentiation formula for stiff systems is carried out 

by [3]. This method successfully avoids the use of 

starting values and thereby executed block method 

approach with fixed step size. [3] utilizes the fixed step 

approach to determine the numerical result. This 

approach of fixed step size is not comparable with 

variable step size change and tolerance level approach 

which guarantees convergence of every iteration. Block 

hybrid k-step backward differentiation formulas for 

large stiff systems has be executed by [13]. This 

method possesses the properties of block backward 

differentiation formula and has the vantage of avoiding 

the use of predictor method for initializing the process. 

[13] solved both linear stiff and non stiff systems 

utilizing fixed step size without implementing step size 

change and tolerance level to guarantee better 

efficiency and accuracy. [17] implemented the 

numerical solution of first order stiff ODEs using fifth 

order block backward differentiation formulas. The 

idea is basically for stiff ODEs which solved large 

systems of ODEs simultaneously with fixed step size as 

against finding a suitable step size and including 

tolerance level. The parallel implementation of the 

parallel block backward differentiation formulas 

displays important benefits above the successive 

implementation. The idea of step size change and 

tolerance level was implemented but the technique of 

finding a suitable step size for each tolerance level was 

not examined by [23]. The derivation of block solver 

for multidimensional systems is the main aim of this 

research study. The introduction of block solver for 

multidimensional systems (BSMS) of ODEs originates 

as a result of the bounded stability attributes of the 

block solver which contributes to the unfitness of the 

system to show better efficiency and accuracy. Again, 

BSMS is proposed by [15-16] to outwit the Dahlquist 
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roadblocks. Again, [15-16] suggested the introduction 

of variable step variable and variable step size as an 

option to better accuracy and efficiency. BSMS will 

ensure better efficiency and accuracy by the 

introduction of variable step variable order and finding 

a suitable variable step size to ensure the satisfaction of 

the convergence criteria. BSMS possesses the idea of 

block method and the implementation process is done 

by a specially designed formula to achieve the desired 

result thereby ensuring error control or monitoring.  

The contribution of this research study is the 

derivation and implementation of a block solver for 

multidimensional systems via variable step variable 

order and finding a suitable step size. Block solver as a 

result of the multidimensional systems will be 

implemented like other block backward differentiation 

formulas adopting block method approach.  

 

 

2 Developing the Block Solver of 

Multidimensional Systems 
The process of developing the block solver for 

multidimensional systems of ODEs (BSMS) will be 

done via interpolation and collocation together with 

multinomial as the basis function approximate. This 

propose block solver is constructed using 𝑘 + 1 − 𝑠𝑡𝑒𝑝 

of block predictor mode of order 𝑝 + 1 while the block 

corrector mode uses 𝑘 − 𝑠𝑡𝑒𝑝  of order 𝑝 . This 

combination is referred to as the block solver defined in 

form of variable step and variable order. 

The block predictor mode utilizes 𝑦𝑛−𝑖, 𝑖 = 0  as 

the interpolation point and 𝑓𝑛−𝑖, 𝑖 = 0, 1, 2, 3  as the 

collocation points. On the other hand, the block 

corrector mode takes on 𝑦𝑛−𝑖, 𝑖 = 2 for interpolation 

and  𝑓𝑛+𝑖, 𝑖 = 1, 2, 3 as the points of collocation. The 

derivation of block solver is subjected to a special 

multinomial basis function approximate 

 

𝑦(𝑥) = ∑ 𝑎𝑖 (
𝑥−𝑥𝑛

ℎ
)
𝑖

𝑗
𝑖=0 ,       (6) 

 

where  𝑎𝑖,  𝑖 = 0, 1, 2 , 3, 4  constitute the unknown 

physical quantities required to be examine specially. 

Whenever (6) is utilized to approximate (1), theorem 2 

is satisfied. Hence, the analytical solution of the points 

of interpolation 𝑥 = 𝑥𝑛−𝑖, 𝑖 = 0 𝑎𝑛𝑑 𝑥 = 𝑥𝑛−𝑖, 𝑖 = 2 

will produce 

 

𝑦(𝑥𝑛) ≈ 𝑦𝑛 , 𝑦(𝑥𝑛−𝑖) ≈ 𝑦𝑛−2,     (7)  

 

and points of collocation, 𝑥 = 𝑥𝑛−𝑖, 𝑖 = 0, 1, 2, 3, 𝑥𝑛+𝑖, 
𝑖 = 1, 2, 3 to bring forth   

𝑦 ,(𝑥𝑛−𝑖) ≈ 𝑓𝑛−𝑖, 𝑖 = 0, 1 2, 3, 𝑦 ,(𝑥𝑛+𝑖) ≈ 𝑓𝑛+𝑖, 𝑖 =
0, 1 2, 3.                            (8)   

 

Equations (7) and (8) will be combined together to 

produce the system of equations in the form of 𝐴𝑋 =
𝐵 . The solution loop will converge whenever the 

absolute values of the pre-eminent diagonal 

components of the constant coefficient square matrix A 

of the system 𝐴𝑋 = 𝐵  are larger than the total of 

absolute values of the other constant coefficient of the 

row [11]. Calculating 𝐴𝑋 = 𝐵  and after then, 

substituting the results into (6) as well as evaluating at 

some selected interval of 𝑥 = 𝑥𝑛+𝑖, 𝑖 = 1, 2, 3 will give 

rise to block predictor mode and block corrector mode 

of 

 

𝑦𝑛+1 =∑ 𝛼𝑖𝑦𝑛−𝑖
1

𝑖=0
= ℎ∑ 𝛽𝑖𝑓𝑛−𝑖

3

𝑖=0
 

      (9) 

𝑦𝑛+1 =∑ 𝛼𝑖𝑦𝑛−𝑖
1

𝑖=2
= ℎ∑ 𝛽𝑖𝑓𝑛+𝑖

3

𝑖=1
 

 

Equation (9) is called block solver for 

multidimensional systems of ODEs [18-22]. Block 

solver developed by (9) has variable step and variable 

order. The block predictor mode has 4-step of order 4 

while the block corrector mode has 3-step of order 3. 

This combination is a special design of a higher block 

predictor mode with a lower block corrector mode.  

 

2.1 Theoretical Properties of the Method 
Theorem 3: Whenever the block solver (9) converges 

to a certain pth order of equations then the order of (9) 

is at leastwise p  [9]. 

Theorem 4: The order of (9) for first order equations 

must be greater than or equal to one whenever it is 

convergent [9].See [9] for proof. 

 

2.2 Executing the Convergence Criteria of 

Block Solver 
The usage of block solver for estimating the principal 

local truncation error call for the block predictor mode-

block corrector mode to own ilk order. To realized this 

we allow the block predictor to be  𝑞 − 𝑠𝑡𝑒𝑝 Adams 

Bashforth method and block corrector to be  (𝑞 − 1) −
𝑠𝑡𝑒𝑝  Adams-Moulton method, both then own 𝑝 = 𝑘 .  

The 𝑞 − 𝑠𝑡𝑒𝑝 𝑤𝑖𝑡ℎ 𝑘𝑡ℎ order ABM pair is therefore 
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𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝛾𝑖
∗∇𝑖𝑓𝑛,

𝑞−1

𝑖=0
  𝑝∗ = 𝑘, 𝐶𝑘+1

∗ = 𝛾𝑘
∗ 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝛾𝑖∇
𝑖𝑓𝑛+1,

𝑞−1

𝑖=0
 𝑝 = 𝑘, 𝐶𝑘+1 = 𝛾𝑘     }

 

 

, 

      𝑘 = 1,2, …      (10) 

 

Whenever we presume (10) to be utilized in 

𝑃(𝐸𝐶)𝜇𝐸1−𝑡 mode, then, in the second of (10),  𝑦𝑛+1 

will be replaced by 𝑦𝑛+1
[𝑣+1]

, and the value  𝑓𝑛+1 

displayed on the right side by 𝑓𝑛+1
[𝑣]

, the remaining 

values of  𝑓𝑛−𝑞  being replaced by 𝑓𝑛−𝑞
[𝜇−𝑡]

, 𝑞 =

0,1,… , 𝑘 − 1. We can surmount this task by specifying 

∇𝑣
𝑖 𝑓𝑛+1

[𝜇]
 as ∇𝑖𝑓𝑛+1

[𝜇]
 with the one value 𝑓𝑛+1

[𝜇]
 replaced  as 

𝑓𝑛+1
[𝑣]

. That is, 

∇𝑣
𝑖 𝑓𝑛+1

[𝜇]
= ∇𝑖𝑓𝑛+1

[𝜇]
+ 𝑓𝑛+1

[𝑣]
− 𝑓𝑛+1

[𝜇]
       (11) 

We may rewrite (30) in the class 

∑ (𝛾𝑖∇
𝑖𝑓𝑛+1
[𝜇]

− 𝛾𝑖
∗∇𝑖𝑓𝑛

[𝜇]
) = 𝛾𝑘−1

∗ 𝑓𝑛+1
[𝜇]𝑘−1

𝑖=0   (12) 

 

and represent (10)  as the notational system. 

Right away, the pair of (10) is utilized in 𝑃(𝐸𝐶)𝜇𝐸1−𝑡 
mode, and employs the mode of Adams methods to 

construct a type of ABM method that is very tedious 

and difficult to handle in terms of the computation. The 

type is defined as follows: 

𝑃:  𝑦𝑛+1
[0]

= 𝑦𝑛
[𝜇]
+ ℎ∑ 𝛾𝑖

∗∇𝑖𝑓𝑛
[𝜇−1]𝑘−1

𝑖=0  (13) 

(𝐸𝐶)𝜇  

 
𝑓𝑛+1
[𝑣]

= 𝑓 (𝑥𝑛+1, 𝑦𝑛+1
[𝑣]
)

𝑦𝑛+1
[𝑣+1]

= 𝑦𝑛
[𝜇]
+ ℎ∑ 𝛾𝑖∇𝑣

𝑖 𝑓𝑛+1
[𝜇−1]𝑘−1

𝑖=0

}   𝑣 =

0,1,… , 𝜇 − 1         (14) 

(𝐸1−𝑡   𝑓𝑛+1
[𝜇]

= 𝑓 (𝑥𝑛+1, 𝑦𝑛+1
[𝜇]
)  

 

whenever 𝑡 = 0. 

To utilize the block solver, we demand the calculation 

of 𝑦𝑛+1
[𝜇]

− 𝑦𝑛+1
[0]

. Deducting (13) from (14) with  

  𝑣 = 𝜇 − 1 we have 

𝑦𝑛+1
[𝜇]

− 𝑦𝑛+1
[0] = ℎ∑ (𝛾𝑖∇𝜇−1

𝑖 𝑓𝑛+1
[𝜇−𝑡]

− 𝛾𝑖
∗∇𝑖𝑓𝑛

[𝜇−𝑡]
)

𝑘−1

𝑖=0
 

= ℎ𝛾𝑖
∗∇𝜇−1

𝑘 𝑓𝑛+1
[𝜇−𝑡]

. 

Since 𝐶𝑘+1
∗ = 𝛾𝑘

∗   and  𝐶𝑘+1 = 𝛾𝑘 , the block solver 

estimate will be seen as  

𝑊 =
          𝐶𝑝+1

        𝐶𝑝+1
∗ − 𝐶𝑝+1

< 𝜺.   (15) 

Whenever the principal local truncation error is at 𝑥𝑛+1 

, the 𝑇𝑛+1 is achieved as 

𝑇𝑛+1 =
          𝐶𝑝+1

        𝐶𝑝+1
∗ − 𝐶𝑝+1

( 𝑦𝑛+1
[𝜇]

− 𝑦𝑛+1
[0]
) =

𝛾𝑘

𝛾𝑘
∗−𝛾𝑘

=

ℎ𝛾𝑖
∗∇𝜇−1

𝑘 𝑓𝑛+1
[𝜇−𝑡]

. 

Whenever 𝛾𝑘
∗ − 𝛾𝑘 = 𝛾𝑘−1

∗ , wherefrom  

𝑇𝑛+1 == ℎ𝛾𝑖
∗∇𝜇−1
𝑘 𝑓𝑛+1

[𝜇−𝑡]
. See [4, 7, 15-16, 18-22] for 

more info. 

 

2.3 Step by Step Implementation Algorithm of 

Block Solver 

Step 1: choose a step size h  and vary the step size until 

a suitable variable step size h  is found 

Step 2: use Taylor’s series of order four to prime the 

block solver. 

Step 3: write the code of block solver using 

Mathematica 

Step 4: run equation (13) with step 1 under the platform 

of Mathematica Kernel 9. 

Step 5: if step 4 fails repeat the process again as 

prescribed by step 1. 

Step 6: if step 5 is successful after determining the 

suitable variable step size h  then proceed to step 7. 

Step 7: print the maximum errors of the block solver.  

 

 

3 Results and Discussion 
Three model applications will be examine to show case 

better efficiency and accuracy of the block solver. The 

computational results of BSMS be compared with the 

analytical result and verified using some selected 

convergence criteria  of 

𝟏𝟎−𝟑, 𝟏𝟎−𝟒, 𝟏𝟎−𝟓, 𝟏𝟎−𝟔, 𝟏𝟎−𝟕 𝒂𝒏𝒅 𝟏𝟎−𝟖. The BSMS 

is applied under a proficient mode in the manner of 

𝑷(𝑬𝑪)𝒖  to examine the convergence criteria, 

efficiency, accuracy and maximum error. The block 

solver of (9) will be devised and carried out under the 

platform of Mathematica to solve the model 

applications of the multidimensional systems of ODEs.  

 

3.1 Numerical Examples 
We utilized the idea of compartment analysis to 

transforms the diagram into a system of linear 

differential equations. The concept has been utilized to 

formulate real life modes in various topics such as 

environment science, chemical science, heating, 

cooling, kinetics, mechanics and electrical energy.  

A compartment diagram consists of the following 

elements. 

Variable Names : Each compartment is marked with a 

variable X. 
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Arrows: Each arrow is labeled with flow rat R. 

Input Rate: An arrowhead directing at compartment X 

documents input rate R. 

Output Rate: An arrowhead directing away from 

compartment X documents output rate R. 

 

 

     0                

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: A diagram of compartment analysis. The 

diagram represents the classical brine tank problem of 

figure 2.  

 

Gathering the single linear differential equation for 

a diagram compartment X is carried out by composing 
𝑑𝑋

𝑑𝑡
 for the left hand side of the differential equation. 

Again, in algebraic manner we add the input and output 

rates to get the right hand side of the differential 

equation, allowing to the equilibrium law. 
𝑑𝑋

𝑑𝑡
= 𝑠𝑢𝑚 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒𝑠 − 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑎𝑡𝑒𝑠 

Conventionally, a compartment that has no coming 

arrowhead possess input zero, and a compartment that 

has no coming out possess output zero. 

 

These model applications of the systems of ODEs 

are as follows 

 Recycled brine tank cascade [10] 

 Biomass Transfer [10]. 

 Population problems [1]. 

Model Application 1: Three brink tanks in cascade with 

recycling 

 

Let brine tanks A, B, C be given volumes of 

𝟔𝟎, 𝟑𝟎, 𝟔𝟎, respectively, as in figure 2 

 

 

 

 

. 

 

 

 

 

 

 

 

Fig. 2: Three brine tanks in cascade with recycling.  

 

Suppose that fluid drains from tank A to B at rate r, 

drains from tank B to C at rate r, then drains from tank 

C to A at rate r. The tank volumes remain constant due 

to constant recycling of fluid. For the purpose of 

illustration, let 𝒓 = 𝟏𝟎. Uniform stirring of each tank is 

assumed, which implies uniform salt concentration 

throughout each tank.  

Let 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)  denote the amount of salt at 

time t in each tank. No salt is lost from the system, due 

to recycling. Using compartment analysis, the recycled 

cascade is modeled by the non-triangular system  

𝑥′(𝑡) = −
1

6
𝑥 +

1

6
𝑧, 

𝑦′(𝑡) =
1

6
𝑥 −

1

3
𝑦, 

𝑧′(𝑡) =
1

3
𝑦 −

1

6
𝑧.  

The analytical solution is given by 

𝑥(𝑡) = 2 − e−
t

3 cos (
𝑡

6
) + 3e−

t

3 sin (
𝑡

6
), 

𝑦(𝑡) = 1 − e−
t

3 sin (
𝑡

6
) − 3e−

t

3 cos (
𝑡

6
), 

𝑧(𝑡) = 2 − 2e−
t

3 sin (
𝑡

6
) + 4e−

t

3 cos (
𝑡

6
). 

At infinity, 𝑥 = 𝑧 = 𝑐1, 𝑦 =
𝑐1

2
. This implies that the 

total amount of salt is uniformly distributed in the 

tanks, in the ratio 2 ∶ 1: 2 [10]. 

 

Model Application 2: Biomass Transfer 

Consider a European forest having one or two 

varieties of trees. We select some of the oldest trees, 

those expected to die off in the next few years, and then 

follow the cycle of living trees into dead trees. The 

dead trees eventually decay and fall from seasonal and 

biological events. Finally, the fallen trees become 

humus. Let variables 𝑥, 𝑦, 𝑧, 𝑡 be   

𝑥(t) = biomass decayed into humus,  
𝑦(t) = biomass of dead trees,  
𝑧(t) = biomass of living trees,  
t = time in decades (decade = 10years). 
A typical biological model is  

𝑥′(𝑡) = −𝑥(𝑡) + 3𝑦(𝑡), 
𝑦′(𝑡) = −3𝑦(𝑡) + 5𝑧(𝑡), 

A B 

C 

𝑥1 𝑥2 

𝑥1
2

 

𝑥2
4

 

𝑥3 

𝑥3
6
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𝑧′(𝑡) = −5𝑧(𝑡).  
Suppose there are no dead trees and no humus at 

𝑡 = 0 , with initially 𝑧0  units of living tree biomass. 

These assumptions imply initial conditions 𝑥(0) =
𝑦(0) = 0, 𝑧(0) = 𝑧0. The analytical solution is seen as 

𝑥(t) =
15

8
z0(e

−5t − 2e−3t + e−t),  

𝑦(t) =
5

2
z0(e

−5t + e−3t), 

𝑧(𝑡) = 𝑧0𝑒
−5𝑡. 

The live tree biomass 𝑧(𝑡) = 𝑧0𝑒
−5𝑡  decreases 

according to a Malthusian decay lay from its initial size  

𝑧0. It decays to 60% of its original biomass in one year 

[10]. 

 

Model Application 3: Population problem 

The rate at which population 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 changes is  
𝑑𝑥

𝑑𝑡
= (𝑎1 − 𝑎2 − 𝑎3)𝑥 + 𝑏2𝑦 + 𝑐2𝑧, 

𝑑𝑦

𝑑𝑡
= (𝑏1 − 𝑏2 − 𝑏3)𝑦 + 𝑎2𝑥 + 𝑐3𝑧  

𝑑𝑧

𝑑𝑡
= (𝑐1 − 𝑐2 − 𝑐3)𝑧 + 𝑎3𝑥 + 𝑏3𝑦, 

where the initial population 𝑥(0) = 50, 𝑦(0) =
60 𝑎𝑛𝑑 𝑧(0) = 25  while (𝑎1, 𝑎2, 𝑎3) = (3, 0, 2) , 
(𝑏1, 𝑏2, 𝑏3) = (4, 2, 1)  and (𝑐1, 𝑐2, 𝑐3) = (5, 3, 0)  are 

given. 

The exact solutions are  

𝑥(𝑡) = 𝑒−𝑡(−3 − 10𝑒2𝑡 + 63𝑒5𝑡), 
𝑦(𝑡) = 60𝑒𝑡, 
𝑧(𝑡) = 𝑒−𝑡(2 − 40𝑒2𝑡 + 63𝑒5𝑡) [1]. 

 

TERMINOLOGY 

BSMS :  block solver for multidimensional 

   systems of ODEs. 

𝜺:  tolerance level of the convergence  

  criteria. 

𝑀𝐴𝑋𝐸:  maximal error(s). 

 

Table 1. Results of Model Application 1 

Method Used MAXE Convergence 

Criteria 

BSMS 2.18648 × 10−7 10−4 

BSMS 2.27731 × 10−7  

BSMS 2.33203 × 10−8  

BSMS 3.43747
× 10−12 

10−6 

BSMS 2.4776 × 10−11  

BSMS 2.21512
× 10−12 

 

BSMS 4.44089
× 10−16 

10−8 

BSMS 2.66454
× 10−15 

 

BSMS 0.  

 

Table 2. Results of Model Application 2 

Method Used MAXE Convergence 

Criteria 

 

BSMS 9.85964 × 10−4 10−3 

BSMS 1.57492 × 10−4  

BSMS 7.37505 × 10−5  

BSMS 1.4094 × 10−8 10−5 

BSMS 1.40426 × 10−9  

BSMS 1.0126 × 10−8  

BSMS 1.46215
× 10−12 

10−7 

BSMS 1.4293 × 10−13  

BSMS 1.04594
× 10−12 

 

 

Table 3. Results of Model Application 3 

Method Used MAXE Convergence 

Criteria 

 

BSMS 4.66481 × 10−7 10−4 

BSMS 3.59918 × 10−7  

BSMS 4.65102 × 10−7  

BSMS 4.54676 × 10−11 10−6 

BSMS 3.53992 × 10−11  

BSMS 4.53291 × 10−11  

BSMS 1.42109 × 10−14 10−8 

BSMS 7.10543 × 10−15  

BSMS 7.10543 × 10−15  

 

 

4 Conclusion 
The block solver for multidimensional systems 

(BSMS) of ODEs has been suggested. The block solver 

is product of block predictor mode and block corrector 

mode which is formulated utilizing variable step and 

variable order. Three model applications with 

exponentially and trigonometrically solutions in nature 

were examined. The block solver adopted the idea of 

variable step-variable order and variable step size to 

implement the procedure. The convergence criteria 

apply (15) together with (9) to ensure the 

implementation The convergence criteria of  
10−3, 10−4, 10−5, 10−6, 10−7 𝑎𝑛𝑑 10−8  were utilized 

to decide the MAXE results. The mathematical 
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expression of (15) is used to decide whether to accept 

or reject the results. The high level of efficiency and 

accuracy achieved were made possible with the 

determination of a suitable step size and block solver 

designed via variable step and variable order. Block 

solver derived has the capacity to proffer solution to 

multidimensional systems of ODEs with oscillating and 

vibration behavior via the efficient utilization of 

variable step size-variable order and suitable variable 

step size. A step by step approach for realizing the 

result is specified. The execution of block solver is 

implemented under the Mathematica Kernel 9. Thus, 

makes it easier to achieve faster computation and 

precise results.  Furtherwork is required to build a 

block solver to handle stiff oscillating and vibration 

solutions.  
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