ASSESSMENT OF STEEL SLAG-SEA SHELL POWDER-BASED GEOPOLYMER CONCRETE ON MECHANICAL AND DURABILITY PROPERTIES

OKORO, WILSON CHUKWUNONYENIM (20PCI02083)

AUGUST, 2022

ASSESSMENT OF STEEL SLAG-SEA SHELL POWDER-BASED GEOPOLYMER CONCRETE ON MECHANICAL AND DURABILITY PROPERTIES

BY

OKORO, WILSON CHUKWUNONYENIM (20PCI02083) B.Eng. Civil Engineering, Landmark University, Omu-aran, Kwara State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING (M.Eng.) IN CIVIL ENGINEERING, COLLEGE OF ENGINEERING COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (M.Eng.) in Civil Engineering, College of Engineering, Covenant University.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **OKORO, WILSON CHUKWUNONYENIM** (**20PCI02083**), declare that this research was done by me under the strict supervision of Dr. Solomon O. Oyebisi in the Department of Civil Engineering, Covenant University. To the best of my knowledge, no part of this report partially or wholly has been submitted here in Covenant University or elsewhere in a previous application for the award of a degree. All data have been duly acknowledged.

OKORO, WILSON CHUKWUNONYENIM

Signature and Date

CERTIFICATION

We certify that this dissertation titled "ASSESSMENT OF STEEL SLAG-SEASHELL **POWDER-BASED** GEOPOLYMER CONCRETE ON **MECHANICAL** AND DURABILITY PROPERTIES" is an original research work carried out by OKORO, WILSON CHUKWUNONYENIM (20PCI02083) in the Department of Civil Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr Solomon O. Oyebisi. We have examined and found this work acceptable as part of the requirements for the award of Master of Engineering (M.Eng.) in Civil Engineering.

Dr. Solomon O. Oyebisi (Supervisor)

Prof. Anthony N. Ede (Head of Department)

Prof. Obanishola M. Sadiq (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this report to Almighty God, whose grace favoured me through my project duration, making it a success. To him alone be all the glory. Also, to my parents Mr & Mrs Okoro, for their admonition and encouragement.

ACKNOWLEDGEMENTS

My first gratitude is to the Almighty God, who has been with from inception till now and made my project a huge success. Also, my family most especially my parents Mr & Mrs Okoro for their consistent support throughout my master's programme.

I want to deeply appreciate the Chancellor, Covenant University, Dr. David O. Oyedepo, whose remarks have served as a continual inspiration of one's abilities and possibility mentality. Thank you, sir, and long live your legacy. Also, to the Vice-Chancellor, Prof. Humphrey Adebayo, Dean School of Postgraduate Studies, Prof. Akan B. Williams, Sub-dean, Dr Emmanuel O. Amoo, and the Dean of the College of Engineering, Professor David Olukanni. My deep appreciation to the Head of Department Civil Engineering, Prof, Anthony N. Ede for all their tenacious efforts to ensure that Covenant University becomes one of the top ten universities in the world by the year 2022.

I want to warmly appreciate my mentor and supervisor, Dr Solomon Oyebisi, for his effort towards the success of my project, especially his patience and longsuffering; God bless you sir.

My deep gratitude to the PG coordinator, Dr. Gideon Bamibgoye, Prof. David Omole, Engr. John Oluwafemi, Dr. Paul Awoyera, Dr. Ofuyatan Olatokunbo, Dr. Oluwarotimi Olofinnade, Dr. Mark, Engr. Abimbola Odetoyan, Engr. Jolayemi Joshua, Engr. Sanni, Mr Friday and the entire staff of Civil Engineering for their contribution to my project.

My warm appreciation to my siblings, friends, colleagues, and families in the Lord: Precious Okoro, Wilfred Okoro, Daniel Okoro, Ven. Prof. Oyedeji, Tomi Kayode, Adebanke Ogundipe, John Effiong, Daniel Ayoola, Victor Ajayi, Ogaga Odokuma, Promise Epelle, Prince Osilaechun, PraiseGod Aminu among others. I love you all.

TABLE OF CONTENTS

	PAGES
ACCEPTANCE DECLARATION	iii
CERTIFICATION	iv v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS LIST OF FIGURES	viii xi
LIST OF TABLES	xiii
LIST OF PLATES	XV
LIST OF ABBREVIATION	XV
ABSTRACT	xviii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the study	1
1.2 Problem Statements	3
1.3 Aim of the Study	4
1.4 Objective of the Study	4
1.5 Justification for the Study	4
1.6 Scope of the Study	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Precursor	6
2.2 Seashell	7
2.2.1 Species of Seashell	9
2.2.2 Preparation of Seashell for structural application	10
2.2.3 Chemical Composition of Seashell	12
2.2.4 Physical properties of Seashell	13
2.2.5 Mechanical properties of concrete containing seashells	14

2.3 Ground granulated blast furnace slag (GGBFS)	15
2.4 Steel slag	17
2.5 Activators	18
2.6 Geopolymer	19
2.6.1 Durability of Geopolymer concrete	23
2.7 Knowledge Gap(s) and fillings	27
CHAPTER THREE: METHODOLOGY	28
3.1 Materials	28
3.1.1 Preparation of seashell and steel slag	28
3.2 Mix Design Proportion	29
3.2.1 Proportioning and mixing constituent materials	30
3.3 Experimental Tests	31
3.3.1 Workability test	31
3.3.2 Mechanical tests	32
3.3.2.1 Compressive strength	32
3.3.2.2 Split tensile	33
3.3.2.3 Flexural test	34
3.3.3 Durability tests	34
3.3.3.1 Thermal test	34
3.3.3.2 Drying Shrinkage	35
3.4 Characterizations	36
3.4.1 Scanning Electron Microscopy (SEM) and Energy dispersive x-ray (EDX) analysis	36
3.4.2 X-ray Fluorescence (XRF) analysis	36
3.4.3 X-ray Diffraction (XRD) analysis	37

CHAPTER FOUR: RESULTS AND DISCUSSION	38
4.1 Introduction	38
4.2 Oxide composition of binders	38
4.3: Physical Test	38
4.3.1 Specific gravity test	38
4.3.2: Slump test	38
4.3.2: Density test	39
4.4 Mechanical test	40
4.4.1 Compressive strength test	40
4.4.2 Split tensile strength	42
4.4.3 Flexural Test	44
4.5 Durability test	46
4.5.1 Dry Shrinkage test	46
4.5.2 Thermal Test	48
4.5.2.1 Thermal Conductivity test	48
4.5.2.2 Thermal resistivity	51
4.7 Characterization test	52
4.7.1 Scanning Electron Microscopic (SEM) and Energy Dispersive X-ray (EDX)	52
4.7.2 X-ray diffraction (XRD)	54
CHAPTER FIVE: CONLUSIONS AND RECOMMENDATIONS	57
5.1 Conclusions	57
5.2 Recommendations	57
5.3 Contributions to Knowledge	58
REFERENCES	59
APPENDIX	71

LIST OF FIGURES

FIGURES TITLE OF FIGURES

PAGES

2.1	A chart of the raw chemical composition of River oyster seashells, sea oys seashells, short-necked claim seashells, and green mussel seashells	ster 13
2.2	Upon firing is schematic depiction of micro-structural change in geopolyr paste	
2.3	Depiction of compressive strength of geopolymer and ordinary Portla cement specimen on exposure to 5 % sulfuric acid (H_2SO_4)	and 26
2.4	Specimen of OPC, fly ash (GPC) activated with sodium silicate (Na ₂ Si and sodium hydroxide (NaOH) on exposure to 5% MgSO ₄ and Na ₂ S	
4.1	Slump test of fresh geopolymer and Portland cement concrete mix	39
4.2	Density of GPC and PCC at 7, 14, 28 & 56 days curing.	40
4.3	Compressive strength test on 3, 7, 14, 28 & 56days curing	42
4.4	Split tensile strength test on 3, 7, 14, 28 and 56days curing	44
4.5	Flexural strength test on 3, 7, 14, 28 & 56days curing	46
4.6	Dry shrinkage of GPC and PCC at different curing days	47
4.7	Thermal conductivity of sample composition	49
4.8	A graph of temperature (K) against distance (mm) of sample	49
4.9	A graph of temperature (K) against distance (mm) of sample B	50
4.10	A graph of temperature (K) against distance (mm) of sample C	50
4.11	A graph of temperature (K) against distance (mm) of PCC	51

4.12	Thermal resistivity of different sample compositions	51
4.13	SEM analysis of Portland cement concrete	52
4.14	SEM and EDX analysis of geopolymer concrete sample A (100 % slag), (90 % slag, 10 % seashell), C (80 % slag, 20 % seashell), D (70 % slag, 30 seashell)	
4.15	XRD analysis of sample A (100% slag)	55
4.16	XRD analysis of sample B (90% slag, 10% seashell)	55
4.17	XRD analysis of Portland cement concrete.	56

LIST OF TABLES

TABLESTITLE OF TABLES

PAGES

2.1	An overview of how various seashell types were used	11
2.2	Quantity of Steel produced in Nigeria from 2010 to 2019	16
2.3	Chemical composition of ground granulated blast furnace slag (GGBFS)	17
2.4	Chemical composition of steel slag	18
2.5	Research on geopolymer concrete application	21
3.1	Volumetric M 40 Mix Design for PCC & GPC	30
4.1	Chemical oxide composition of Oyster seashell, steel slag and Portland cement	38
4.2	Compressive strength test of PCC and GPC at 3 & 7days	40
4.3	Compressive strength test of PCC and GPC at 14 & 28days	41
4.4	Compressive strength test of PCC and GPC at 56 days	41
4.5	Compressive strength average for 3, 7, 14, 28 and 56 days	41
4.6	Split tensile strength test of PCC and GPC at 3 & 7 days	43
4.7	Split tensile strength test of PCC and GPC at 14 & 28 days	43
4.8	Split tensile strength test of PCC and GPC at 56 days	43
4.9	Split tensile strength average for 3, 7, 14, 28 and 56 days	44
4.10	Split tensile strength test of PCC and GPC at 3 & 7days	45
4.11	Flexural strength test of PCC and GPC at 14 & 28 days	45
4.12	Flexural strength test of PCC and GPC on 56 days	45

4.13	Dry Shrinkage for PCC and GPC for 1, 3 and 7 days	47
4.14	Dry Shrinkage for PCC and GPC for 14, 28 and 56 days	47
4.15	Thermal conductivity test at various temperatures (K) and distance (mm)	48

LIST OF PLATES

PLATES	TITLE OF PLATES PAG	ES
2.1	Various types of Bivalvia seashell	9
2.2	(a) Crushed seashell, (b) Sieved seashell powder obtained through $63\mu m$ sieve	10
2.3	(a) Concrete production, (b) Masonry work (c) Concrete block production, (d) Tile installation	20
3.1	(a) Oyster seashell, (b) Oyster seashell powder	28
3.2	(a) Slag, (b) Abrasion machine, (c) Pulverized slag, (d) Sieved pulverized slag	29
3.3	Fresh mix geopolymer concrete	30
3.4	(a) Geopolymer concrete cube (b) Geopolymer concrete cylinder	31
3.4	GPC Slump test	32
3.5	Compressive strength test on geopolymer cube	33
3.6	Split tensile test	33
3.7	(a) Sample, (b) Thermal readings displayed, (c) TD 1002 heat conduction bunit	base 35
3.8	SEM machine (JEOL 7000600)	36
3.9	XRF machine	36
3.10	Rigaku D/Max-IIIC X-ray diffractometer machine	37
4.1	Dry density test	39
4.2	Geopolymer concrete beam for dry shrinkage test	46

LIST OF ABBREVIATION

CaCO ₃	Calcium Carbonate
CaO	Calcium Oxide
CaSO ₄	Calcium Sulfate
C-A-S-H	Calcium Alumina Silicate Hydrate
C-S-H	Calcium Silicate Hydrate
C_2S	Tri-calcium silicate
C_3S	Bi-calcium silicate
CO_2	Carbon dioxide
Ca(OH) ₂	Calcium hydroxide
FA	Fly Ash
FAK	Fly Ash Kaolin
FASS	Fly Ash Silica fume furnace Slag
FTIR	Fourier Transform Infrared spectroscopy
GGBFS	Ground granulated blast furnace slag
GPC	Geopolymer Concrete
HNO ₃	Nitric acid
H_2SO_4	Sulfuric acid
ID	Identifier
MgSO ₄	Magnesium Sulfate
N-A-S-H	Sodium Alumina Silicate Hydrate
Na ₂ CO ₃	Sodium carbonate
NaOH	Sodium hydroxide
Na ₂ SiO ₃	Sodium silicate
OPC	Ordinary Portland Cement
pН	Potential of Hydrogen
PLC	Portland cement
PCC	Portland Cement Concrete
SEM	Scanning Electron Microscopy
S 1	Sample 1
S 2	Sample 2

Sample Average
Temperature
Thermogravimetric Analysis
Potassium silicate
X-Ray Diffraction
X-Ray Fluorescence

ABSTRACT

Globally, a high carbon footprint has led to an unconducive and negative environmental impact on all living organisms. The production of cement is one of the sources which generates these footprints. To this effect, finding an alternative to cement to mitigate these footprints is imperative. One of these alternatives is the production of a geopolymer binder (GPB). This study deployed oyster seashell and steel slag as precursors combined with sodium silicate (Na₂SiO₃) as an activator in geopolymer concrete production. The concrete materials were prepared, cured, and tested. Workability, mechanical, durability and characterization test were conducted on the geopolymer concrete (GPC). The findings revealed an increase in slump value with an increment in a seashell. The optimum GPC compressive strength for 3, 7, 14, 28 and 56 days was obtained with 10% seashell, while seashell replacement exceeded 10 % declined in strength. Low thermal conductivity and less shrinkage were attained with seashell increment. Portland cement concrete achieved better mechanical strength when compared to steel slag geopolymer concrete. However, steel slag seashell powder-based geopolymer gained better thermal properties than Portland cement concrete (PCC) at 20% seashell replacement.

Keywords: Compressive strength, geopolymer concrete, sodium silicate, thermal conductivity, sustainable production, waste management.