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a b s t r a c t 

This work considers the well-known laminar boundary layer flows; about a flat-plate in 

a uniform stream of fluid (Blasius flow) and about a moving plate in a quiescent am- 

bient fluid (Sakiadis flow) both under a convective surface boundary condition. Entropy 

generation due to the effect of angle of inclination, magnetic parameter, chemical reaction 

parameter and Schmidt number on the flows is investigated. The third order partial dif- 

ferential equations governing the flows are reduced to ordinary differential equations by 

suitable similarity variables. The obtained equations are tackled by the Runge-Kutta fourth 

order method with shooting technique and the results are employed to calculate entropy 

generation. The solution of Blasius flow is compared with the works in literature and are 

found to be in excellent agreement. Entropy generation can be minimized by increasing 

the magnetic parameter (M), chemical reaction parameter (R) and Schmidt number (Sc) 

for Blasius flow. Magnetic parameter reduces entropy generation for Sakiadis flow while 

other parameters such as angle of inclination, chemical reaction parameter and Schmidt 

number boost fluid irreversibility. 

© 2020 The Authors. Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

Introduction 

The classical Blasius and Sakiadis flows have been widely investigated by several researchers in the recent years because 

of their significant applications in several engineering and industrial processes such as polymer extrusion, drawing of copper 

wires, continuous stretching of plastic films and artificial fibers, wire drawing, glass-fiber, metal extrusion, and metal spin- 

ning. The flow along a horizontal, stationary surface located in a uniform free stream was first investigated by Blasius [1] in

1908 while Sakiadis [2] analyzed the flow of a boundary layer on a mobile surface with constant velocity. Although the

equations obtained by both researchers are similar the boundary conditions are not the same. In 1938 Howarth [3] applied

the Runge-Kutta method to reinvestigate the Blasius problem. Further analysis was carried out by Abussita [4] to establish 

the validity of the solution. The heat transfer through laminar boundary layer was investigated by Lighthill [5] . Tsou et al.

[6] further investigated the Sakiadis flow. The effect of suction/injection on a moving plate inside a free stream for both
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Nomenclatue 

u, v velocity components along x and y directions respectively 

U ∞ 

Constant free stream velocity 

U w 

plate velocity 

ν kinematic viscosity 

k thermal conductivity 

c p specific heat of the fluid at constant pressure 

ρ fluid density 

g acceleration due to gravity 

μ dynamic viscosity 

T temperature of the fluid 

B 2 0 magnetic field parameter 

β thermal expansion coefficient 

βc solutal expansion coefficient 

α thermal diffusivity 

D coefficient of mass diffusivity 

B i Biot number 

Blasius and Sakiadis flows was considered by Chen [7] . Further investigations include the influence of thermal radiation and

convective heat boundary conditions [8–14] , effect of velocity slip boundary condition [15] and hydromagnetic effect [ 16 , 17 ].

Several important phenomenon occurring in nature and those industrial and engineering processes have necessitated 

the investigation of simultaneous heat and mass transfer. An in-depth understanding of processes such as evaporation, con- 

densation, sublimation, solution mining of salt caverns for crude oil storage, casting of metal alloys and photosynthesis, 

solidification of binary alloy and crystal growth, melting and cooling near ice surfaces is required to properly monitor the 

interaction between the thermal and solutal buoyance forces. The heat transfer analysis has been undertaken by several 

researchers Waqas [18] , Waqas et al. [19–21] , Hayat [ 22 , 23 ]. Furthermore, investigation regarding heat and mass transfer of

a laminar boundary layer flow has been conducted by a number of authors; Subhashini et.al. [24] , Reddaiah and Rao [25] ,

Olanrewaju et.al. [26] , Hayat et al. [27] and Irfan et al. [28] . 

However, several thermal and industrial systems are not efficient due to irreversibility which usually arises during such 

processes. An irreversible process occurs when both the system and its surrounding cannot be returned to its original state. 

Processes such as fluid friction, heat transfer, magnetohydrodynamic, thermal radiation have been found to be generating 

irreversibilities. Since irreversibility promotes entropy generation which is a destruction of the quality of available energy. 

Improving the quality of useful energy in a fluid flow is of utmost importance and this can be achieved by examining the

distribution of entropy generation within the flow field. This is possible by adjusting some fluid thermophysical parame- 

ters which encourage entropy production within that region. The approach by Bejan [ 29 , 30 ] revealed that minimization of

entropy production will improve thermal systems and designs. Thereafter the approach has been adopted by several other 

investigators [23–39] . 

This work aims at exploring the irreversibility associated with laminar boundary layer about a flat-plate in a uniform 

stream of fluid (Blasius flow) and about a mobile plate in a quiescent ambient fluid (Sakiadis flow). Inclined magnetic field

and chemical reaction effects on entropy generation which have not been accounted for in literature are examined in this 

work. The significance of this work is found in several natural phenomena and engineering processes where the coupling 

of fluid velocity, thermal and concentration fields is unavoidable. These include crude oil storage, casting of metal alloys, 

photosynthesis, cooling metallic plates in cooling baths, growing crystals. The Blasius and Sakiadis flows equations have 

been approximated by some researchers by applying several techniques like Laguerre function collocation method [40] , 

Numerical quasilinearization scheme [41] , LTNHPM [42] , Quartic B-spline method [43] , Taylor series method [44] . Runge-

Kutta method which has been applied by some authors [ 26 , 45 , 46 ] is employed in this work due to its high accuracy and

rapid convergence. 

Problem statement 

Consider a two dimensional mixed convection boundary layer flow of an incompressible, viscous and electrically con- 

ducting fluid with a constant free stream velocity U ∞ 

and U w 

as the plate velocity. An inclined magnetic field at angle γ to

the fluid flow is applied. Choosing the Cartesian coordinates ( x, y ) such that x − axis is along the plate while the y − axis is

normal to the plate. The induced magnetic field is neglected due to the assumption that it is small compared to the applied

magnetic field. Furthermore, for the Blasius case, the variable free stream velocity is taken as U(x ) = ax while the linear

stretching velocity is U(x ) = ax for the Sakiadis case, see Fig. 1 . Buoyancy forces are induced due to the density variation of

temperature and concentration and as such incorporated in the momentum equation. Following the assumptions made, the 

governing equations are [ 11 , 46 ] 
2 
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Fig. 1. Flow configuration and coordinate system. 
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∂x 
+ 

∂v 
∂y 

= 0 , (1) 

u 

∂u 

∂x 
+ v 

∂u 

∂y 
= ν

∂ 2 u 

∂ y 2 
− σB 

2 
0 u 

ρ
sin 

2 
( γ ) + gβ( T − T ∞ 

) + g β∗( C − C ∞ 

) , (2) 

u 

∂T 

∂x 
+ v 

∂T 

∂y 
= α

∂ 2 T 

∂ y 2 
+ 

μ

ρc p 

(
∂u 

∂y 

)2 

, (3) 

u 

∂C 

∂x 
+ v 

∂C 

∂y 
= D 

∂ 2 C 

∂ y 2 
+ R 1 ( C − C ∞ 

) . (4) 

The following boundary conditions are imposed, 

u ( 0 ) = 0 , v = 0 , −k ∂T 
∂y ( 0 ) = h f 

[
T f − T 

]
, C = C w 

, 

u ( ∞ ) → U(x ) = ax, T (∞ ) → T ∞ 

, C ( ∞ ) → C ∞ 

. 

}
Blasiusflow (5) 

u ( 0 ) = U(x ) = ax, v = 0 , −k ∂T 
∂y ( 0 ) = h f 

[
T f − T 

]
, C = C w 

, 

u ( ∞ ) → 0 , T (∞ ) → T ∞ 

, C ( ∞ ) → C ∞ 

. 

}
Sakiadisflow (6) 

To obtain the similarity equations together with the boundary conditions, the following similarity transformation vari- 

ables are applied, 

η = y 

(
U ∞ 

νx 

)
, u = U ∞ 

f ′ ( η) , v = 

1 

2 

(
U ∞ 

ν

x 

)(
η f ′ − f 

)
, θ = 

T − T ∞ 

T f − T ∞ 

, φ = 

C − C ∞ 

C w 

− C ∞ 

. (7) 

On the application of Eq. (7) , the dimensionless coupled ordinary differential equations are obtained as, 

d 3 f 

d η3 
( η) + 

1 

2 

f ( η) 
d 2 f 

d η2 
( η) − M 

2 sin 

2 
( γ ) 

df 

dη
( η) + Grθ ( η) + Gcφ( η) = 0 , (8) 

1 

Pr 

d 2 θ

d η2 
( η) + 

1 

2 

f ( η) 
dθ

dη
( η) + Ec 

(
d 2 f 

d η2 
( η) 

)2 

= 0 , (9) 

1 

Sc 

d 2 φ

d η2 
( η) + 

1 

2 

f ( η) 
dφ

dη
( η) − Rφ( η) = 0 . (10) 

The boundary conditions for the Blasius and Sakiadis flows are respectively given as; 

f ( 0 ) = 0 , 
df 
dη ( 0 ) = 0 , 

df 
dη ( ∞ ) → 1 , 

dθ
dη ( 0 ) = −Bi [ 1 − θ ( 0 ) ] , θ ( ∞ ) → 0 , φ( 0 ) = 1 , φ( ∞ ) → 0 . 

}
Blasiusflow (11) 

and 

f ( 0 ) = 0 , 
df 
dη ( 0 ) = 1 , 

df 
dη ( ∞ ) → 0 , 

dθ
dη ( 0 ) = −Bi [ 1 − θ ( 0 ) ] , θ ( ∞ ) → 0 , φ( 0 ) = 1 , φ( ∞ ) → 0 . 

}
Sakiadisflow (12) 
3 
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Table 1 

Comparison of results of Eq. (6) at M = 0 , Gr = 0 , Gc = 0 . 

η Parand[40] Cortell [45] Najafi [41] Present [Eq. (6)] 

1 0.1655724 0.16557 0.1655734 0.16557522995886 

2 0.6500351 0.65003 0.6500308 0.65003502355883 

3 1.3968223 1.39682 1.3968230 1.39683666515884 

4 2.3057618 2.30576 2.3057710 2.30577859719202 

5 3.2832910 3.28330 3.2833090 3.28330293372002 

6 4.2796435 4.27965 4.2796670 4.27965257274908 

7 5.2792684 5.27927 5.2792950 5.27927689321484 

8 6.2792336 6.27923 6.2792810 6.27924821706894 

9 7.2792358 7.27925 7.2792900 7.27925352840791 

Table 2 

Comparison of f ′′ (0) for Blasius equation at M = 0 , Gr = 

0 , Gc = 0 . 

f ′′ (0) 

Aminikhah [42] 0.33206 

Lal and Paul [44] 0.33206 

Aminikhah and Kazemi [43] 0.33206 

Afridi and Qasim [46] 0.33205 

Present result 0.332054275728057 

Table 3 

Comparison of −θ ′ (0) for Blasius equation at M = 0 , Gr = 0 , Gc = 0 . . 

Aziz [13] Subhashini et al. [24] Present 

Bi Pr = 0 . 72 Pr = 10 Pr = 0 . 72 Pr = 10 Pr = 0 . 72 Pr = 10 

0.8 0.2159 0.3812 0.21586 0.38119 0.2158635 0.38118933 

1 0.2282 0.4213 0.22818 0.42134 0.2281772 0.42134193 

5 0.2791 0.6356 0.27913 0.63557 0.2791296 0.63558052 

10 0.2871 0.6787 0.28715 0.67873 0.2871446 0.67872083 

20 0.2913 0.7026 0.29131 0.70255 0.2913272 0.70256304 

 

 

 

 

 

 

 

 

where M 

2 = 

σB 2 
0 

x 

ρU ∞ 

Magnetic field parameter, Gr = 

gβ( T f −T ∞ 

) x 

U 2 
Thermal grashof number, 

Gc = 

g βc ( C w −C ∞ 

) x 

U 2 
Solutal grashof number, Pr = 

ν
α Prandtl number, Sc = 

ν
D Schmidt number, R = 

R 1 x 
U ∞ 

Chemical reaction pa- 

rameter, Ec = 

U 2 ∞ 

C p ( T f −T ∞ 

) 
Eckert number, Bi = 

h f 
k 

( νx 
U ∞ 

) 
1 
2 Convective parameter 

Solution procedure 

Solutions of Eqs. (8)–(10) together with the boundary conditions (11) and (12) are obtained via the fourth order Runge- 

Kutta method with shooting technique implemented on Maple 18. The step size 0.001 is adopted to obtain the solution of

the equations. The results are truncated at a distance where the boundary layers effect is less significant. The model for

Blasisus flows are transformed to a set of first order initial value problems as follows: Let y 1 = f, y 2 = f ′ , y 3 = f ′′ , y 4 = θ, y 5 =
θ ′ , y 6 = φ, y 7 = φ′ , applying these yield 

y 1 
′ = y 2 , y 1 (0) = 0 

y 2 
′ = y 3 , y 2 (0) = 0 

y 3 
′ = − 1 

2 
y 1 y 3 + M 

2 sin 

2 
( γ ) − Gr y 4 − Gc y 6 , y 3 (0) = s 1 

y 4 
′ = y 5 , y 4 (0) = 1 , 

y 5 
′ = − Pr 

2 

(
y 1 y 5 − Ecy 2 3 

)
, y 5 (0) = s 2 , 

y 6 
′ = y 7 , y 6 (0) = 1 

y 7 
′ = − Sc 

2 ( y 1 y 7 + R 1 y 6 ) , y 7 (0) = s 3 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(13) 

To validate the solution obtained via the fourth order Runge-Kutta method, the result of f (η) in the absence of magnetic

parameter, thermal grashof number and solutal grashof number as depicted in Table 1 , is compared with the ones reported

in literature. Furthermore, the result of f ′′ (0) is compared with Aminikhah [42] , Lal and Paul [44] , Aminikhah and Kazemi

[43] , Afridi and Qasim [46] in Table 2 . The skin friction and Nusselt number are also computed and compared, see Tables 3

and 4 . 

Entropy generation analysis is primarily concerned with the optimization of thermal production in fluid flow, and one 

of the best approaches is the application of second law of thermodynamics. Bejan [30] gave the local volumetric rate of
4 
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Table 4 

Comparison of f ′′ (0) and −θ ′ (0) for Blasius equation for various values of Bi , Gr and Pr when M = 0 , Gc = 0 . . 

Makinde and Olanrewaju [47] Subhashini et al. [24] Present 

Bi Gr Pr f ′′ (0) −θ ′ (0) f ′′ (0) −θ ′ (0) f ′′ (0) −θ ′ (0) 

0.1 0.1 0.72 0.36881 0.07507 0.36875 0.07505 0.3687980 0.0750908 

1.0 0.1 0.72 0.44036 0.23750 0.44032 0.23746 0.4402978 0.2375965 

0.1 1.0 0.72 0.63200 0.07704 0.63198 0.07700 0.2294749 0.0770525 

0.1 0.1 3.00 0.34939 0.08304 0.34937 0.08301 0.3494247 0.0830526 

0.1 0.1 7.10 0.34270 0.08672 0.34270 0.08670 0.3427221 0.0867356 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

entropy generation as: 

S G = 

k 

T 2 ∞ 

(
∂T 

∂y 

)2 

+ 

μ

T ∞ 

(
∂u 

∂y 

)2 

+ 

D 

C ∞ 

(
∂C 

∂y 

)2 

+ 

D 

C ∞ 

(
∂T 

∂y 

)(
∂C 

∂y 

)
+ 

σB 

2 
0 

T ∞ 

u 

2 , (14) 

Eq. (14) gives the detailed contributions of each parameter to entropy generation. The first term on the right hand is

heat transfer entropy generation, the second term is fluid friction entropy generation while the third, fourth and fifth terms 

are mass transfer, mass-fluid transfer and magnetic field irreversibilities respectively. Applying the similarity variables in 

Eqs. (7) to (14) yields 

Ns = 

(
dθ
dη ( η) 

)2 + 

Br 
�T 

(
df 
dη ( η) 

)2 + λ1 

(
dφ
dη ( η) 

)2 + λ2 

(
dθ
dη ( η) 

dφ
dη ( η) 

)
+ 

Br M 

2 

�T 

(
df 
dη ( η) 

)2 + 

Br 
Da �T 

(
df 
dη ( η) 

)2 (15) 

where �T = 

T ∞ 

T f −T ∞ 

temperature difference parameter, ( λ1 = 

DT 2 ∞ 

( C w −C ∞ 

) 2 

C ∞ 

k ( T f −T ∞ 

) 
, λ2 = 

DT 2 ∞ 

( C w −C ∞ 

) 2 

C ∞ 

k ( T f −T ∞ 

) 
) Dimensionless constant param- 

eters, Br = 

μU 2 ∞ 

k ( T f −T ∞ 

) 
Brinkman number and Ns = 

v xT 2 ∞ 

k U ∞ 

( T f −T ∞ 

) 
Characteristic entropy generation rate. 

In Eq. (15) , the characteristic entropy generation Ns is stated as the summation of irreversibilities due to heat transfer

denoted as N 1 = ( dθ
dη

(η) ) 2 and fluid friction as 

N 2 = 

Br 

�T 

(
df 

dη
( η) 

)2 

+ λ1 

(
dφ

dη
( η) 

)2 

+ λ2 

(
dθ

dη
( η) 

dφ

dη
( η) 

)
+ 

Br M 

2 

�T 

(
df 

dη
( η) 

)2 

. (16) 

Results and discussion 

In this work, numerical solution via Runge-Kutta fourth order method with shooting technique has been proffered to the 

heat and mass Blasius and Sakiadis flows. The impact of themophysical parameters such as the angle of inclination, magnetic 

parameter, chemical reaction and Schmidt number on fluid velocity, temperature, concentration, entropy generation are 

discussed in plots 2–16. Realistic values of Schimdt number are chosen as follows: hydrogen ( Sc = 0 . 22 ), water vapor ( Sc =
0 . 62 ), ammonia ( Sc = 0 . 78 ) and Propyl Benzene 

( Sc = 2 . 68 ) at temperature 25 0 C and one atmospheric pressure. Furthermore, Prandtl values number chosen is Pr = 3 . 

Figs. 2–4 depict the influence of angle of inclination αon fluid velocity, concentration and entropy generation for Blasius 

and Sakiadis flows. In Fig. 2 A (Blasius flow) and 2B (Sakiadis flow) fluid velocity is found to have decelerated as the angle of

inclination is increased. This is due to the fact that an inclined angle reinforced the decreasing effect of the magnetic field,

thus retarding fluid velocity. Fig. 3 A (Blasius flow) and 3B (Sakiadis flow) reveal that the influence of an inclined angle on

concentration profiles is significant for both flows. In Fig. 4 A (Blasius flow) entropy generation is significantly reduced, the 

reduction noticed is as a result of the deceleration in fluid motion as indicated in Figs. 2 A, while a rise in entropy generation

is displayed in Fig. 4 B (Sakiadis flow). 

The influence of magnetic field on fluid velocity, temperature, concentration and entropy generation for both Blasius and 

Sakiadis flows is presented in Figs. 5–8 . Fig. 5 A (Blasius flow) and 5B (Sakiadis flow) indicate a retardation in fluid motion as

magnetic parameter increases in values. Application of magnetic field orthogonally to the direction of fluid flow introduces 

a Lorentz force, a resistive type of force which reduces fluid motion. The opposite trend is noticed in Figs. 6 A and B for

both Blasius and Sakiadis flows. A significant rise in fluid temperature is observed, the interaction of the applied magnetic 

field generated the Lorentz force which has a strong resistance to fluid motion thereby converting the kinetic energy to heat

energy, that is Joule heating, hence the rise in fluid temperature. Fig. 7 A (Blasius flow) and 7B (Sakiadis flow) reveal the

response of concentration profile to a rise in the values magnetic parameter. Similar explanation as in Fig. 5 A and B holds,

the Lorentz force reduces the rate of mass transfer within the flow leading to a reduction in the concentration profile. The

influence of magnetic parameter in Fig. 8 A and B for Blasius and Sakiadis flows depict a considerable decline in entropy

generation. The observed reduction can be traced to the net effect of the decrease in fluid velocity and concentration. 

Next is the influence of chemical reaction parameter on fluid velocity, temperature, concentration and entropy genera- 

tion as shown in Figs. 9 –12 . As depicted in Figs. 9 A and 11 A (Blasius flow); 9B and 11B (Sakiadis flow), a reducing trend
5 
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Fig. 2. αversus fluid veloicty: Blasius flow (A) and Sakiadis flow (B). 

Fig. 3. αMass Concentration: Blasius flow (A) and Sakiadis flow (B). 

 

 

 

 

 

in velocity and concentration profiles is observed for both Blasius and Sakiadis flows as chemical reaction parameter in- 

creases in values. Destructive reaction is represented as γ > 0 while γ < 0 depicts generative reaction. The decrease noticed 

in Fig. 11 indicates a reduction in the thickness of solutal boundary caused by the destructive reaction as values of R rise from

1 to 7, the species concentration decreases considerably. In Figs. 10 A (Blasius flow), a drop in fluid temperature is depicted

while an opposite trend is noticed in Fig. 10 B (Sakiadis flow) as chemical reaction parameter takes higher values. Entropy

generation reduces in Fig. 12 A (Blasius flow) with an increment in chemical reaction parameter while an increase in entropy

generation is observed for Sakiadis flow as portrayed in Fig. 12 B. The observation in Fig. 12 A is an indication that chemical

reaction parameter can be regulated to achieve entropy generation minimisation for Blasius. 
6 
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Fig. 4. αVersus Entropy Generation: Blasius flow (A) and Sakiadis flow (B). 

Fig. 5. MVersus Fluid Velocity: Blasius flow (A) and Sakiadis flow (B). 

 

 

 

Finally, the plots of Schmidt versus fluid velocity, temperature, concentration and entropy generation are presented and 

expalined in Figs. 13–16 . It is evident in Figs. 13 and 15 that fluid velocity and concentration decelerate as Schmidt number

increases. The term which represents Schmidt number in the concentration equation is the ratio of fluid kinematic viscosity 

to the mass diffusivity. It describes the relationship between the relative thickness of the hydrodynamic boundary layer 

and mass-transfer boundary layer, therefore a rise in Schmidt number increases fluid viscosity and reduces the species 

concentration leading to a fall in fluid velocity and concentration. It is also noticed in Fig. 14 that fluid temperature increases

as Schmidt number increases for both Blasius flow and Sakiadis flow. Furthermore, entropy generation’s response to variation 

in Schmidt number is elucidated in Fig. 16 A and B. In Fig. 16 A entropy generation reduces for Blasius flow except in the
7 
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Fig. 6. MVersus Fluid Temperature: Blasius flow (A) and Sakiadis flow (B). 

Fig. 7. MVersus Mass Concetration: Blasius flow (A) and Sakiadis flow (B). 

 

 

region far away from the plate. The reason for this is linked with the observations in Figs. 13 and 14 where fluid velocity

and temperature at the far away region decreases significantly. However, for Sakiadis flow as depicted in Fig. 16 B entropy

generation increases at the plate surface but slightly reduces in the middle of the channel. 
8 
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Fig. 8. MVersus Entropy Generation: Blasius flow (A) and Sakiadis flow (B). 

Fig. 9. R Versus Fluid Velocity: Blasius flow (A) and Sakiadis flow (B). 

9 
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Fig. 10. R Versus Fluid Temperature: Blasius flow (A) and Sakiadis flow (B). 

Fig. 11. R Versus Mass Concentration: Blasius flow (A) and Sakiadis flow (B). 

10 
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Fig. 12. R Versus Entropy Generation: Blasius flow (A) and Sakiadis flow (B). 

Fig. 13. ScVersus Fluid Velocity: Blasius flow (A) and Sakiadis flow (B). 

11 
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Fig. 14. ScVersus Fluid Temperature: Blasius flow (A) and Sakiadis flow (B). 

Fig. 15. ScVersus Mass Concentration: Blasius flow (A) and Sakiadis flow (B). 

12 
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Fig. 16. ScVersus Entropy Generation: Blasius flow (A) and Sakiadis flow (B). 

 

 

 

Conclusion 

Investigation has been conducted on the influence of inclined magnetic field and chemical reaction on the entropy gen- 

eration of Blasius and Sakiadis flows. The partial differential equations that model the flows are obtained and reduced to a

set of ordinary differential equations (ODE). The numerical solutions of velocity, temperature and concentration profiles are 

obtained via the fourth order Runge-Kutta method with the shooting technique by transforming the ODE into a set of initial

value problems. The results are employed to compute entropy generation. The following submissions based on the results 

are given: 

1 Fluid velocity decelerates for both Blasius and Sakiadis flows with increase in inclined parameter, magnetic parameter, 

chemical reaction parameter and Schmidt number, 

2 Fluid temperature recieves a boost for Blasius and Sakiadis flows as the values of magnetic parameter, chemical reaction 

parameter (except for Blasius flow) and Schmidt number increase, 

3 Fluid concentration decays for Blasius and Sakiadis flows with variation in magnetic field parameter, chemical reaction 

parameter and Schmidt number, 

4 For Blasius flow, entropy generation drops considerably with increases in magnetic parameter, chemical reaction param- 

eter and Schmidt number, 

5 For Sakiadis flow, entropy generation increases at the plate surface with increase in Inclined angle, chemical reaction 

parameter and Schmidt number. 

The result of entropy generation for the Blasius flow is an indication that these parameters can be adjusted to con-

trol fluid irreversibility. This investigation gives more insight into the entropy generation minimisation (EGM) regime. It is 

revealed that appropriate values of some flow parameters such as inclined parameter, magnetic parameter, chemical reac- 

tion parameter and Schmidt number can be chosen to minimise entropy generation rate. Therefore efficient utilisation of 

available resources and optimal design is realisable. 
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