ROBUST ESTIMATION OF THE STATE OF CHARGE IN A LITHIUM-ION BATTERY FOR A BATTERY MANAGEMENT SYSTEM

OMILOLI, KOTO ANDREW (20PCK02300)

SEPTEMBER, 2022

ROBUST ESTIMATION OF THE STATE OF CHARGE IN A LITHIUM-ION BATTERY FOR A BATTERY MANAGEMENT SYSTEM

BY

OMILOLI, KOTO ANDREW (20PCK02300) B.Eng Electrical and Electronics Engineering, Niger Delta University, Amassoma

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.ENG) DEGREE IN ELECTRICAL AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

SEPTEMBER, 2022

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of **Master of Engineering** (**M.Eng**) degree in Electrical and Electronics Engineering in the Department of **Electrical and Information Engineering**, College of Engineering, Covenant University, Ota, Nigeria.

Mr. Taiwo B. Erewunmi (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OMILOLI, KOTO ANDREW (20PCK02300) declares that this research was carried out by me under the supervision of Dr. Ayokunle A. Awelewa of the Department of **Electrical and Information Engineering,** College of Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

OMILOLI, KOTO ANDREW

Signature and Date

CERTIFICATION

We certify that this dissertation titled "ROBUST ESTIMATION OF THE STATE OF CHARGE IN A LITHIUM-ION BATTERY FOR A BATTERY MANAGEMENT SYSTEM" is an original research work carried out by OMILOLI, KOTO ANDREW (20PCK02300) in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Ayokunle A. Awelewa. We have examined and found this work acceptable as part of the requirements for the award of Master of Engineering (M.Eng) degree in Electrical and Electronics Engineering.

Dr. Ayokunle A. Awelewa (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Ogbonnaya Inya Okoro (External Examiner) **Signature and Date**

Signature and Date

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

To my loving father, Chief Engr. Koto Andrew Omiloli

ACKNOWLEDGEMENTS

I appreciate God almighty and the numerous people without whose psychological, academic, spiritual, and financial support, this project would not have been possible. Special appreciation to Covenant University's management administrated by Prof. Abiodun H. Adebayo, the Dean of School of Postgraduate Studies (SPS), Prof. Akan B. Williams and the full SPS staff for organizing seminars and sending update emails throughout this Postgraduate Programme. Many thanks to my supervisor, Dr. Ayokunle A. Awelewa who acted in capacity of a mentor, read my numerous revisions, and helped clarify some challenging concepts. Thanks to the entire faculty and staff in the Electrical and Information Engineering Department, particularly the Postgraduate Committee, for their immense support towards the successful completion of this Master's Programme. I specially and deeply appreciate the invaluable effort of the Head of Department, Prof. Emmanuel Adetiba, who granted me access to the research laboratory in Covenant Applied Informatics and Communication-Africa Centre of Excellence (CApICACE) for conducting some simulations used in this work.

As well, I am grateful to the management of Ikeja Electric Plc (most specifically, Engr. Adedeji Adedotun Ajayi, Mr. Osinowo Israel, Mr. Samuel Chinwendu Nwagbo, and Mr. Aloye Benjamin Ayomide) for granting me access to the Equipment Testing and Commissioning workshop, making available some materials used in carrying out the experiment for acquisition of the primary data used in this work and coaching me during the process.

And finally, thanks to the National Information Technology Development Agency (NITDA) and my father Chief Engr. Koto Andrew Omiloli, who both consistently supported me financially throughout the course of this study.

TABLE OF CONTENTS

CONTENT PAG	GES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	XV
LIST OF ABREVIATIONS AND SYMBOLS	xvi
ABSTRACT	xviii
CHAPTER ONE: INTRODUCTION	19
1.1 Background to the Study	19
1.2 Statement of the Problem	22
1.3 Aim and Objectives	22
1.4 Justification for the study	23
1.5 Scope of the Study	23
1.6 Limitation of the Study	23
1.7 Organization of the Dissertation	23
CHAPTER TWO: LITERATURE REVIEW	25
2.1 Preamble	25
2.2 Theoretical Background	25
2.2.1 Battery Models - Equivalent-Circuit Models (ECMs)	26
2.2.2 Battery Models - Electro-Chemical Models (EM)	26
2.3 Review of Related Works	27
2.3.1 Coulomb Counting Method (CC)	27
2.3.2 Open Circuit Voltage (OCV)	28
2.3.3 The Kalman Filter (KF) Algorithm	30
2.3.4 The Extended Kalman Filter (EKF)	32
2.3.5 The Improved Extended Kalman Filter (IEKF)	33
2.3.6 Online SOC Estimation Based on the Gas-Liquid Dynamics	33
2.3.7 Adaptive Dual Kalman Filter	34
2.3.8 Fuzzy Logic Sliding Mode Observer	35
2.3.9 FPGA Based SoC Estimator and Constant Current Charging/Discharging	
Controller for Lead–Acid Battery	36
2.3.10 Bias Correction Technique	37

2.3.11 Adaptive Unscented Kalman Filter with Noise Statistics Estimator	37
2.3.12 PID Compensator-Based Adaptive Extended Kalman Filter	38
2.3.13 Neural Network	40
2.3.14 Particle Filter-Based State-of-Charge Estimation	40
2.3.15 Multi-Innovation Kalman Filter	41
2.3.16 Battery Degradation	41
2.4 Gaps in Literature	42
2.5 Chapter Summary	42
CHAPTER THREE: MATERIALS AND METHODS	44
3.1 Preamble	44
3.2 Research Design	44
3.3 Data Collection and Description	45
3.3.1 Primary Battery Data	45
3.3.2 Secondary Battery Data	49
3.4 Software Tools and Resources	52
3.5 Battery Modelling	53
3.6 Model Parameter Identification using the Globalized Pattern Search	59
3.7 Validation of ECM Models	61
3.8 Look-up Tables - SOC-OCV Curve	62
3.9 Curve Fitting Based Battery Parameter Estimation	63
3.10 Step-by-Step Guide Implementation of the Extended Kalman Filter	68
3.11 Modified Extended Kalman Filter	69
3.12 The Sliding Mode Observer (SMO) Algorithm	71
3.13 Linear Matrix Inequality	74
3.14 Hybrid Estimator	77
3.15 Computer Implementation of ECM Models	78
3.16 Chapter Summary	82
CHAPTER FOUR: RESULTS AND DISCUSSION	83
4.1 Preamble	83
4.2 Curve Fitting Based Parameter Estimation Results	83
4.3 Optimized Parameter Estimation Results	89
4.4 Estimators Performance	94
4.5 Hybrid Estimator Performance	98
4.6 Test of Estimators Robustness	100
4.6.1 Convergence Rate Test	100
4.6.2 Robustness Against Current and Voltage Noise	102
4.6.3 Robustness Against Current and Voltage Offsets	103
4.6.4 Robustness Against Parameter Disturbance	106
4.7 Primary Data Validation of State Estimators	108
4.8 Chapter Summary	110

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	111
5.1 Summary	111
5.2 Research Contributions	112
5.2 Recommendations	112
REFERENCES	114
APPENDIX A – BASIC BATTERY TERMINOLIGIES	118
APPENDIX B – SIMULINK SAMPLE MODELS	120
APPENDIX C – SAMPLE PRIMARY DATA	143
APPENDIX D – SAMPLE SECONDARY DATA	144

LIST OF FIGURES

FIGURES	TITLE OF FIGURES PA	AGES
1.0	A Battery Management System (Hanan et al. 2017)	21
2.0	Schematic of Lithium-ion cell (Farug, 2013)	27
2.1	An Exemplary SOC-OCV Curve (Wenhui et al. 2019)	30
2.2	Schematic of the Kalman Filter Algorithm (Campestrini et al. 2016).	31
2.3	Block Diagram showing FPGA with interfacing units (Dinesh et al. 2020	0) 36
2.4	Flow Chart of AUKF (Simin et al. 2017)	37
2.5	Flow Chart AEKF-PID SOC Estimator (Zheng et al. 2021)	39
2.6	Prediction model for SOC based on Neural Network (Gabriel et al. 2020) 40
3.0	Research Methodological Block Diagram	45
3.1	Primary Data Materials	47
3.2	Wiring Diagram of Experiment	48
3.3	Experimental Setup	49
3.4(a)	Primary Data Charge Current Plot	49
3.4(b)	Primary Data Charge Voltage Plot	49
3.4(c)	Primary Data Discharge Current Plot	49
3.4(d)	Primary Data Discharge Voltage Plot	49
3.5	Secondary Data Materials	50
3.6	Hybrid Pulse Power Characterization (HPPC) test profile (Phillip, 2018)). 50
3.7(a)	Secondary Data Current -Voltage Characteristics Curve	52
3.7(b)	Secondary Data Voltage - Ampere-hour Characteristics Curve	52
3.8	Network Diagram of 1 st Order ECM	53
3.9	Network Diagram of 2 nd Order ECM	54
3.10	Network Diagram of 3 rd Order ECM	56
3.11	Network Diagram of 4 th Order ECM	57
3.12	Global Pattern Search Flow	61
3.13	Model Response of 1 st Order ECM	62
3.14	OCV-SOC Curve	63
3.15	Voltage Relaxation Profiles for SOC Values	67
3.16	Modified Extended Kalman Filter Implementation Flowchart	70

3.17	Block Diagram of Hybrid SOC Estimator	78
3.18	1 st Order ECM Simulink Implementation	80
3.19	4 th Order Simulink ECM Implementation	81
4.0	Current Profile at 25°C	84
4.1	1 st Order Curve Fitting Voltage Estimation Performance	87
4.2	2 nd Order Curve Fitting Voltage Estimation Performance	87
4.3	3 rd Order Curve Fitting Voltage Estimation	88
4.4	4 th Order Curve Fitting Voltage Estimation Performance	88
4.5	First Order Optimized Parameter Estimation	92
4.6	Second Order Optimized Parameter Estimation	92
4.7	Third Order Optimized Parameter Estimation Performance	93
4.8	Fourth Order Optimized Parameter Estimation Performance	93
4.9	First Order SOC Estimation Based on Curve Fitting	94
4.10	Second Order SOC Estimation Based on Curve Fitting	95
4.11	Third Order SOC Estimation Based on Curve	95
4.12	Fourth Order SOC Estimation Based on Curve Fitting	96
4.13	EKF Estimators Performance across Models	96
4.14	LMI Estimators Performance across Models	97
4.15	SMO Estimators Performance across Models	97
4.16	1 st order EKF Performance	99
4.17	Hybrid Estimator Performance with Noise	99
4.18	Hybrid Estimator Performance without Noise	100
4.19	EKF Convergence Performance	101
4.20	EKF Convergence Error Bounds	101
4.21	EKF Response with Noise Input	102
4.22	LMI Response with Noise Input	103
4.23	SMO Response with Noise	103
4.24	EKF Performance Response to Offset 1 A and 0.5 V	104
4.25	LMI Performance Response to Offset 1 A and 0.5 V	105
4.26	SMO Performance Response to Offset 1 A and 0.5 V	105
4.27	EKF Response to Parameter Disturbance	106

4.28	LMI Response to Parameter Disturbance	107
4.29	SMO Response to Parameter Disturbance	107
4.30	EKF Validation with Primary Data	109
4.31	SMO Validation with Primary Data	109
4.32	LMI Validation with Primary Data	110
B.0	Simulink Parameter Estimator using GPSA in Progress	120
B .1	1 st Order ECM Simulink Implementation	121
B.2	2 nd order ECM Simulink Implementation	121
B.3	3 rd Order ECM Simulink Implementation	122
B.4	4 th Order Simulink ECM Implementation	122
B.5	1 st Order Curve Fitting Based SOC Implementation	123
B.6	2 nd Order Curve Fitting Based SOC Implementation	124
B.7	3 rd Order Curve Fitting Based SOC Implementation	125
B.8	4 th Order Curve Fitting Based SOC Implementation	126
B.9	1 st Order EKF System	127
B.10	1 st Order EKF SOC-Reals and Load Voltage Sub System Block	128
B .11	1 st Order EKF Sub System Block	128
B.12	1 st Order EKF Jacobian Matrix Sub System Block	129
B.13	1 st Order EKF State Prediction for EKF Sub System Block	129
B.14	1 st Order EKF Predicted Load Voltage Sub System Block	129
B.15	1 st Order EKF Update State Sub System	129
B.16	2 nd Order EKF SOC-Reals and Load Voltage Sub System Block	130
B.17	2 nd Order EKF Sub System Block	131
B.18	2 nd Order EKF State Prediction for EKF Sub System Block	131
B.19	2 nd Order EKF Update State Sub System Block	132
B.20	2 nd Order EKF Predicted Load Voltage Sub System Block	132
B.21	3rd Order EKF System	133
B.22	4 th Order EKF System	133
B.23	1 st Order LMI Simulink Implementation	134
B.24	1 st Order SMO Implementation in Simulink	136
B.25	2 nd Order SMO Implementation in Simulink	138

B.26	2 nd Order LMI Implementation in Simulink	139
B.27	3 rd Order LMI Implementation in Simulink	140
B.28	4 th Order LMI Implementation in Simulink	141
B.29	Hybrid Estimator Implementation in Simulink	142

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
2.0	An Exemplary Look-Up Table	29
2.1	Kalman Filter Algorithm (Campestrini et al. 2016).	31
3.0	Panasonic 18650PF Cell Parameters	51
3.1	Test Equipment Specifications	51
3.2	SOC-OCV Lookup Table	63
3.3	1 st Order ECM Parameters	66
3.4	2 nd Order ECM Parameters	66
3.5	3 rd Order ECM Parameters	67
3.6	4 th Order ECM Parameters	67
4.0	First Order Curve Fitting Based Parameter Values	84
4.1	Second Order Curve Fitting Based Parameter Values	85
4.2	Third Order Curve Fitting Based Parameter Values	85
4.3	Fourth Order Curve Fitting Based Parameter Values	86
4.4	Performance Metrics on Curve Fitting Based Parameter Estimation	88
4.5	Optimized Parameter Values for First Order ECM	89
4.6	Optimized Parameter Values for Second Order ECM	90
4.7	Optimized Parameter Values for Third Order ECM	90
4.8	Optimized Parameter Values for Fourth Order ECM	91
4.9	Performance Metrics on Optimized Voltage Estimation	93
4.10	Estimators Performance Metrics	98
4.11	Performance Metrics of Hybrid Estimation Performance	100
4.12	Estimators Performance Indices for Robustness Test	108

LIST OF ABREVIATIONS AND SYMBOLS

A/S	Alternative Supply
AEVs	All Electrical Vehicles
Ah	Ampere Hour
ANN	Artificial Neural Network
AEKF	Adaptive Extended Kalman Filter
BMS	Battery management system
CCI	Constant Current
CC	Coulomb Counting
DEKF	Double Extended Kalman Filter
DKF	Dual Kalman Filter
DST	Dynamic Distress Test
EVs	Electrical Vehicles
EM	Electrochemical Model
ECM	Equivalent Circuit Model
EKF	Extended Kalman Filter
FL	Fuzzy Logic
FUDS	Federal Urban Driving Schedule
FLSMO	Fuzzy Logic Sliding Mode Observer
GLD	Gas Liquid Dynamics
HPPC	Hybrid Power Pulse Characterization
IEKF	Improved Extended Kalman Filter
KF	Kalman Filter
LiB	Lithium-ion battery
LiFePo ₄	Lithium iron phosphate
LMI	Linear Matrix Inequality
MAE	Mean Absolute Error
MLP	Multi-Layer Perception
MSE	Mean Square Error
MCPSO	Mixed-Swarm based Cooperative Particle Swarm Optimization

MI	Multi- innovation
NMC	Nickel Manganese Cobalt Oxide
OCV	Open Circuit Voltage
PHEVs	Plug in Electrical Vehicles
PID	Proportional Integral Derivative
PF	Particle Filter
RC	Resistance Capacitor
RUL	Remaining Useful Life
RDT	Remaining Dischargeable Time
RMSE	Root Mean Square Error
SMO	Sliding Mode Observer
SOT	State of Temperature
SOC	State of Charge
SOH	State of health
SOF	State of function
SOB	State of balance
UPF	Unscented Particle Filter
UDDS	Urban Dynameter Driving Schedule
η	Coulombic efficiency
Δ	Change
д	Partial derivative
	such that
x	predicted state
\bar{x}	corrected state
A^T	transpose of A
Σ	sum
$\overline{\mathcal{Y}}$	mean

ABSTRACT

The hazardous effect fossil-based systems have on the planet requires transition to nonpolluting energy sources which lithium-ion batteries (LiBs) fall. An implication is, the state of charge (SOC), must be determined to provide an indication for the available energy left in LiBs. However, there exists the difficulty in measuring the SOC, more so existing methods for SOC estimation are not robust to accommodate battery parameter sensitivity to disturbance. Hence, in this research battery models coupled with SOC estimation techniques, namely Extended Kalman Filter (EKF), Linear Matrix Inequality (LMI) and Sliding Mode Observer (SMO), are developed and implemented to solve the observability problem. Model validation was carried out via primary data while the secondary data was used for validating the state estimators using charge/discharge voltage and current inputs. Performance results showed the LMI and SMO, yielded RMSE and MAE values equal to zero (0), offering a superior accuracy than the EKFs having RMSE values in range of [0.00000861, 0.00680] and MAE in range of [0.00000214, 0.00410]. In addition, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (EKF_{mod}) for the estimation task was carried out. Amongst the improved estimators, the fourth order EKF_{mod} had an accuracy of six (6) decimal places with the smallest error bound of $\pm 2.05\%$. In terms of robustness, the SMO and LMI algorithms demonstrated capability in disturbance rejection from measurement input data at battery temperature of 0°C having both RMSE and MAE values of zero (0) in contrast to the EKF having lesser metrics values. Furthermore, a hybrid (EKF-SMO) estimator developed showed a 93% decrease from the EKF performance metrics and faster convergence. This research recommends the selection of battery models, and the estimators should be a trade-off between model complexity, accuracy, and present computation power.

Keywords: Lithium-ion Battery, Extended Kalman Filter, Sliding Mode Observer, State of Charge, Linear Matrix Inequality, Robust.