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Abstract – The aim of this study will be to design Parallel solver (PS) for oscillatory stiff systems of ordinary 
differential equations (ODEs). PS  will be constructed via a type of specially transformed exponentially fitted 
multinomial approximant in accordance with the behaviour of the solution. The method of interpolation and 
collocation will be utilized. The principal local truncation errors of PS will be used to derive a suitable step size 
and decide the error tolerance criteria for establishing the convergence of PS. Some examples of stiff ODEs 
will be examined and compared with existing methods to show case the efficiency and accuracy of the scheme. 
Parallel solver will be seen as a unique model for solving stiff ODEs without dependent on absolute stability as 
required by backward differentiation formula.  
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1 Introduction 
The model of a large number of technological and 
applied science problems result to systems of 
ODEs. The computational solution of such 
problems via numerical integration, 
interpolation/collocation method and many more 
demands time, large space, softcode especially 
when the ODEs systems is large or the rating of the 
right hand side function is very costly. Thus, there 
is a need for effective parallel solver method to 
provide a quicker solution of such stiff systems. 
The numerical solution of ODEs by Parallelism can 
be split up into three families, viz the parallelism 
throughout the system, parallelism throughout the 
method and parallelism throughout the time. In this 
study, we will solely look at parallelism throughout 
the method. It can be declared clearly that 
parallelism throughout the method for the solution 
of ODEs takes it foundation in a family of 
proficiencies referred to as block methods [6, 27-
28]. 

Stiff derivative equations are described as those 
whose precise solution possess a condition of the 
class 𝑒−𝑐𝑡, where  𝑐 is named as a large prescribe 
constant. This is commonly one component of the 
solution, named the transient solution; the more 
essential part of the solution is named the steady-
state solution. A transient component of a stiff 
equation possesses magnitude 𝑐𝑛𝑒−𝑐𝑡, the 
differential will not decompose as rapidly. Stiff 
systems frequently constitute more than one 

element or depend on two or more elements 
connected together for effective functioning. For 
instances; electric circuit, mechanical and chemical 
flux systems, and traffic electronic network. Such 
systems need two or more dependant variable 
quantity for modelling the behaviour or function of 
the systems. This can be reported in terminal figure 
of a set of coupled first order differential equations. 
We seek for a solution with the example of a pair of 
coupled stiff systems with two or more variable 
quantities 

 
 𝑑𝑦1

𝑑𝑡
= 𝐴11𝑦1 + 𝐴12𝑦2 + 𝐴13𝑦3  

𝑑𝑦2

𝑑𝑡
= 𝐴21𝑦1 + 𝐴22𝑦2 + 𝐴23𝑦3  

𝑑𝑦3

𝑑𝑡
= 𝐴31𝑦1 + 𝐴32𝑦2 + 𝐴33𝑦3.   (1) 

Equation (1) can be composed as a matrix equation  

𝑑�̅�

𝑑𝑡
=

[
 
 
 
 
𝑑𝑦1

𝑑𝑡
𝑑𝑦2

𝑑𝑡
𝑑𝑦3

𝑑𝑡 ]
 
 
 
 

= [

𝐴1 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴23 𝐴33

] = 𝐴�̅�,    

 �̅� = [

𝑦1

𝑦2

𝑦3

]   (2) 

The set of differential equations can be extracted as  
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𝑑�̅�

𝑑𝑡
=

[
 
 
 
 
𝑑𝑦1

𝑑𝑡
𝑑𝑦2

𝑑𝑡
𝑑𝑦3

𝑑𝑡 ]
 
 
 
 

= 𝐴�̅� + 𝑔(𝑡),   �̅�(𝑡) =

[

𝑔1(𝑡)

𝑔2(𝑡)

𝑔3(𝑡)
].   (3) 

In equation (3),  𝑔1(𝑡), 𝑔2(𝑡)  and 𝑔3(𝑡) are the 
driving mathematical functions [9, 17].  
 

Definition 1: The initial value problem (1) is 
ordered to be stiff if it meets  𝑢𝑖 < 0, , 𝑖 = 1(1)𝑚,  
 Max
1≤𝑖≤𝑚

|𝑢𝑖| > min
1≤𝑖≤𝑚

|𝑢𝑖|, ; i.e., whensoever 
(i) 𝑟𝑒(𝜆𝑖) < 0, 𝑖 = 1(1)𝑚, and  
(ii) the stiffness ratio 𝑠 > 1 .  

In addition, it should be mentioned that, this is 
a quite a general resolution with respect to 
mathematics. Stiffness takes place whensoever the 
step length is restrained by stability, rather than 
order onditions [10]. 

 
Definition 2: The initial value problem (1)-(3) 

is stiff oscillatory or having periodic vibrations 
whensoever the eigenvalues 𝜆𝑖 = 𝑢𝑖 + 𝑗𝑣𝑖 , 𝑖 =

1(1)𝑚 of the Jacobian 𝐽 = (
𝜕𝑓

𝜕𝑑𝑦
) have the 

succeeding attributes: 
     
 𝑢𝑖 < 0, , 𝑖 = 1(1)𝑚,     
 Max

1≤𝑖≤𝑚
|𝑢𝑖| > min

1≤𝑖≤𝑚
|𝑢𝑖|, 

or whensoever the stiffness ratio meets  

max
1≤𝑖≤𝑚

|
𝑢𝑖

𝑢𝑗
| > 1 

and   
|𝑢𝑖| < |𝑣𝑗| 

For at least single pair of 𝑖 ∈ 1 ≤ 𝑖 ≤ 𝑚 [10]. 
Theorem 1: Let f: R → R be continuous and  

2π −periodic. Then for each ε > 0, there exists a  
trigonometric polynomial P(x) = ∑ cj

k
j=−n eijx such  

that for all x, |f(x) − P(x)| < 𝜀.  Tantamountly, as 
for  

any such f, there must exist a successive 
polynomial  

such that Pn → f in a uniform manner on R [7]. 
The parallel solver of (1) can be constituted 

as the computational scheme in form of explicit and 
implicit methods.  
𝐴(0)𝑌𝑛 = ∑ 𝐴(𝑖)𝑌𝑛−𝑖 + ℎ ∑ 𝐴(𝑖)𝐹𝑛−𝑖

𝑘
𝑖=0

𝑘
𝑖=1   

𝐴(0)𝑌𝑛 = ∑ 𝐴(𝑖)𝑌𝑛−𝑖 + ℎ ∑ 𝐴(𝑖)𝐹𝑛+𝑖
𝑘
𝑖=1

𝑘
𝑖=2  (4) 

where 𝑌𝑛 =

[
 
 
 
 
 
 
𝑦𝑛+1

𝑦𝑛+2

𝑦𝑛+3

.

.

.
𝑦𝑛+𝑟]

 
 
 
 
 
 

,  𝐹𝑛 =

[
 
 
 
 
 
 
𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

.

.

.
𝑓𝑛+𝑟]

 
 
 
 
 
 

 ( for 𝑛 = 𝑛𝑟,

𝑛 = 0,1,… ), 𝐴(𝑖) 𝑎𝑛𝑑 𝐵(𝑖) are 𝑟 × 𝑟 matrices. 
The parallel solver is called an explicit 

scheme if and only if the constant matrix 𝐵(0) is a 
zero matrix or otherwise referred as an implicit 
scheme [27]. 
 

Theorem 2: The A-stable multi-step 
scheme  

(i) must exist as an implicit, and  
(ii) the almost precise A-stable multi-step 

scheme is 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑓𝑛 + 𝑓𝑛+1) 

of order p = 2 and error coefficient 
𝑐3 = −

1

12
. 

Dahlquist suggested several methods for 
outwitting the above theorem 2. Among them are 
the exponentially fitting and extrapolation 
processes. This study will explore the combination 
of expanded exponentially fitted and extrapolation 
processes to bring about parallel solver for stiff 
ODEs. Nevertheless, the exponentially fitted 
method agrees with behaviour of the stiff solution 
and the components of the extrapolation processes 
will be to implement the suited variable step size 
and error tolerance criteria to enhance the 
convergence of every loop. See [10, 14-15].  

In literature, bookmen suggested the hybrid 
multi-step and hybrid implicit Runge-Kutta to solve 
(1). These methods comes with the vantage of not 
demanding for initiating values and own great 
stability regions. Majority of the backward 
differentiation formula and block hybrid backward 
differentiation formula has auto-initiating values 
with good region of absolute constancy. Other 
methods like block solver, parallel block backward 
differentiation formula and variable step block 
backward differentiation formula possesses some 
vantages like auto-initiating values, parallel 
execution, varying step size algorithm, step size 
modification with great regions of absolute 
stability. The major difficulties and challenges of 
these methods is evident on the inability to use 
exponentially fitted method in line with behaviour 
of the system. Backward differential formulas are 
over dependent on region of absolute stability 
without finding a suitable step size to ensure 
convergence. Again, the idea of auto initiating  is 
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gear towards time saving but there are single 
methods of order four that consumes time with 
better initiating results. On the other hand, parallel 
solver will be regarded as an alternative method to 
outwit the Dahlquist theorem and backward 
differentiation formula by introducing 
exponentially fitted method to approximate in 
accordance with the behaviour of the stiff solution. 
Again, parallel solver will introduce the 
extrapolation processes to overcome the great 
region of absolute stability by bringing about the 
suitable variable step size and error tolerance 
criteria which possesses the capability to change 
the step size, modify the order, vary the step and 
decide convergence. Parallel solver is a tedious 
computation and timing consuming procedure with 
a unique capacity to utilize the principal local 
truncations to find a suited variable step size and 
derive the error tolerance criteria [1-4, 10-11, 15-
29]. 

The motivation of this research emanates 
from the fact that backward differentiation 
formulas are considered the ideal solver for stiff 
ODEs. This is due to the strong region of absolute 
stability. Parallel solver is of Adams family which 
is specially designed to bypass this condition by 
introducing the exponentially fitted method with 
the combination of variable step, variable order and 
variable step size together with error tolerance 
criteria.  The contribution of this research study 
will be using the exponentially fitted method in line 
with behaviour of the exponential solution to build 
the model. Again, the idea of variable step, variable 
order with variable step is introduced to overcome 
the barriers.  

 
 

2 Developing a Parallel Solver 
The parallel solver of the explicit and implicit 
block methods will be developed as a combination 
of variable step and variable order techniques. This 
technique utilizes the 𝑗 − 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑘 + 1 for 
the explicit block method with 𝑦𝑛−1 as the point of 
interpolation and 𝑓𝑛−1, 𝑓𝑛−2, 𝑓𝑛−3 as the points of 
collocation. On the other hand, 𝑗 − 1 −
𝑠𝑡𝑒𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑘  is employed for the implicit 
block method with 𝑦𝑛−2 as the point of 
interpolation as well as 𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3 as the 
points of collocation. Furthermore, this technique 
will employ the expanded exponentially fitted as 
the multinomial approximant defined as  

y(x) = ∑ a̅i (
x−xn

h
)
i

k
i=0 + ∑

ewx

i!
1
i=0 .      (5) 

The expansion of (5) will give birth to the 
expanded exponentially fitted method as  

y(x) = a0 + a1
𝑤(x−x𝑛)

h
+ a2

w2(x−x𝑛)

h2

2

+

a3
w3(x−x𝑛)

h3

3

+ a4
w4(x−x𝑛)

24h4

4

,      (6) 
where a0, a1, a2, a3 and a4 for k=4 are constant 
quantity to be specified in a peculiar way. 
Accepting that (6) gratifies the Weierstrass 
approximation theorem and correspond precisely to 
the solution at some selected points of interval 
xn−1, xn−2 to generate the approximation as  

y(xn−i) ≈ yn−i,     y(xn−2) ≈ yn−2.       (7) 
Interpolating and collocating (7) to gratifies (1) at 
the level where  
xn+i, i = 0, 1, 2,3 will generate the approximation 
of the succeeding approximation as  
y′(xn−i) ≈ fn−i,  i = 0, 1, 2, 3.   y′(xn+i) ≈ fn+i,       
i = 1, 2, 3.                              (8) 
Bringing together the approximations of (7) and (8) 
will lead to fivefold and fourfold systems of 
equation for both explicit and implicit block 
methods as 
𝑎0 = 𝑦𝑛−1 +

3

8
𝑓𝑛 +

19

24
𝑓𝑛−1 −

5

24
𝑓𝑛−2 +

1

8
𝑓𝑛−3,  

𝑎1 =
1

𝑤
𝑓𝑛,  

𝑎2 =
11

6𝑤2 𝑓𝑛 −
3

𝑤2 𝑓𝑛−1 +
3

2𝑤2 𝑓𝑛−2 −
1

3𝑤2 𝑓𝑛−3, 

𝑎3 =
2

𝑤3 𝑓𝑛 −
5

𝑤3 𝑓𝑛−1 +
4

𝑤3 𝑓𝑛−2 −
1

𝑤3 𝑓𝑛−3, 

𝑎4 =
1

𝑤4 𝑓𝑛 −
3

𝑤4 𝑓𝑛−1 +
3

𝑤4 𝑓𝑛−2 −
1

𝑤4 𝑓𝑛−3. (9) 

𝑎0 = 𝑦𝑛−2 +
37

3
𝑓𝑛+1 −

50

3
𝑓𝑛+2 +

19

3
𝑓𝑛+3,  

𝑎1 =
3

𝑤
𝑓𝑛+1 −

3

𝑤
𝑓𝑛+2 +

1

𝑤
𝑓𝑛+3,  

𝑎2 = −
5

2𝑤2 𝑓𝑛+1 +
4

𝑤2 𝑓𝑛+2 −
3

2𝑤2 𝑓𝑛+3,  

𝑎3 =
1

𝑤3 𝑓𝑛+1 −
2

𝑤3 𝑓𝑛+2 +
1

𝑤3 𝑓𝑛+3.     (10) 
Equations (9) and (10) are the unknown physical 
quantities for developing the explicit and implicit 
block methods to be determined. The unknown 
physical quantities of equations (9) and (10) will be 
substituted into equation (6) to get the continuous 
explicit and implicit block methods. This 
continuous explicit and implicit block method will 
be evaluated at some selected points to achieve the 
parallel solver for the explicit and implicit block 
methods as   
y(x) = 𝑦𝑛−1 + h(β0(w, x)𝑓𝑛 + β1(w, x)𝑓𝑛−1 +
β2(w, x)𝑓𝑛−2) + β3(w, x)𝑓𝑛−3   (11) 
y(x) = 𝑦𝑛−2 + h(β0(w, x)𝑓𝑛+1 + β1(w, x)𝑓𝑛+2 +
β2(w, x)𝑓𝑛+3),   (12) 
where w is the frequency, β0(w, x), β1(w, x) and 
β2(w, x) are fixed constants [7, 13-14, 20-26]. 
  
2.1 Developing the Error Tolerance Criteria 

for Implementing Parallel Solver 
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To launch this process, the collection of the 
principal local truncation errors of 𝑘 − 𝑠𝑡𝑒𝑝 
explicit block method with order 𝑝 + 1 method and 
𝑘 − 1 − 𝑠𝑡𝑒𝑝 𝑤𝑖𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑝 for the implicit block 
method is utilized. Parallel solver will be used to 
execute the approximation of the error tolerance 
criteria of the k-step explicit block and implicit 
block methods in the absence of estimating higher 
differential coefficients of 𝑦(𝑥). Accepting that 
𝑝 + 1 = �̅�, where 𝑝 + 1 𝑎𝑛𝑑 �̅� represents the order 
of the explicit and implicit block methods. Right 
away, for a method of order 𝑝, the analysis of 𝑘 −
𝑠𝑡𝑒𝑝 explicit with order 𝑝 + 1 of the explicit block 
method will yield the principal local truncation 
errors as  
𝐶p+4

[1]
hp+4𝑦(p+4)(xn) = y(xn+1) − �̅�n+1

[l̃1]
+

(−
13

720
+

11

2w4 +
25

4w3 +
9

4w2)  + O(hp+5)  

Cp+4
[2]

hp+4𝑦(p+4)(xn) = y(xn+2) − �̅�n+2

[l̃1]
+

(
173

720
+

88

𝑤4 +
50

𝑤3 +
9

𝑤2) + O(hp+5),  (13)      

Cp+4
[3]

hp+4y(p+4)(𝑥n) = y(xn+3) − �̅�n+3

[l̃3]
+

(
1439

720
+

891

2𝑤4 +
675

4w3 +
81

4𝑤2) + O(hp+5)   
Similarly, inquiring into the k − 1 − step implicit 
block method with 𝑜𝑟𝑑𝑒𝑟 𝑝 will generate the 
principal local truncation errors as  
𝐶̅

�̅�+3
[1]

h�̅�+3𝑦(�̅�+3)(xn) = y(xn+1) − �̅�n+1
[q̃1]

−
(176−300𝑤+216𝑤2+215𝑤3)

24𝑤3  + O(h�̅�+4)  

𝐶̅
�̅�+3
[2]

h�̅�+3𝑦(�̅�+3)(xn) = y(xn+2) − �̅�n+2
[q̃1]

−
(176−150𝑤+54𝑤2+25𝑤3)

3𝑤3 + O(h�̅�+4),  (14)      

𝐶̅
�̅�+3
[3]

h�̅�+3y(�̅�+3)(𝑥n) = y(xn+3) − �̅�n+3
[q̃3]

−
9(176−100𝑤+24𝑤2+5𝑤3)

8𝑤3 + O(h�̅�+4)   

Cp+5
[1]

, 𝐶p+5
[2]

, Cp+5
[3]  , 𝐶̅

p̅̅+4

[1]
, 𝐶̅

p̅̅+4

[2]  and 𝐶̅
p̅̅+4

[3]  are in 
existence as distinguish entity of step size h̅ and 
y(x) will work as the accurate solution to 
differential coefficient gratifying the initial 
presumption y̅(xn) ≈ y̅n.  

Continuing to build the presumption that 
for small measures of h,   
y(5)(xn) ≈ �̅�(4)(xn)   (15) 
and the efficiency of the error control procedure 
banks on this presumption (15).  
On deduction of (14) from (13) and disregarding 
terms of degree O(hp̅̅+4) as well as presume (15) 
will result to the error tolerance criteria for the 
principal local truncation errors as 
𝐶̅

p̅̅+4

[1]
hp̅̅+4y(p̅̅+4)(xn) ≈

6450

6437
|yn+1

[l1̅]
− �̅�n+1

[q̅1]
|  < ε1  

𝐶̅
p̅̅+4

[2]
hp̅̅+4y(p̅̅+4)(xn) ≈

6000

6173
|yn+2

[l2̅]
− �̅�n+2

[q̅2]
|  < ε1, 

 (16) 
𝐶̅

p̅̅+4

[3]
hp̅̅+4y(p̅̅+4)(xn) ≈

4050

5489
|yn+2

[l3̅]
− �̅�n+2

[q̅3]
|  < ε1.  

Stating the arguments that  yn+1

[l1̅]
≠ �̅�n+1

[q̅1], yn+2

[l2̅]
≠

�̅�n+2
[q̅2]  and yn+3

[l3̅]
≠ �̅�n+3

[q̅3] are referred to as the 
predicting and correcting approximant of the 
principal local truncation errors for the explicit 
block and implicit block methods.  
𝐶̅

p̅̅+4

[1]
hp̅̅+4y(p̅̅+4)(xn), 𝐶̅

p̅̅+4

[2]
hp̅̅+4y(p̅̅+4)(xn) and 

𝐶̅
p̅̅+4

[3]
hp̅̅+4y(p̅̅+4)(xn) are distinctly addressed as the 

principal local truncation errors and ε1 are the 
boundaries of the error tolerance criteria for 
implementing parallel algorithm  
           In addition, the approximants of the 
principal local truncation errors (16) will be utilize 
to resolve whether to allow the effect of the loop 
with the current step size or repeat the loop with a 
reduce step size. This procedure is verified based 
on the trial run carried out by (16) [5, 8-9, 15-16, 
20-26].  
 
2.2 Step Size Adjustment and Error Control 

Procedures for Parallel Solver 
The global error of (16) can be approximated by  

|y(xn+1) − �̅�n+1

[l̃1]
| ≈

|𝑧(xn+1)−�̅�n+1
[q̅1]

|

h
≈

6450

6437h
|yn+1

[l1̅]
−

�̅�n+1
[q̅1]

|   

|y(xn+2) − �̅�n+2

[l̃2]
| ≈

|𝑧(xn+2)−�̅�n+2
[q̅2]

|

h
≈

6000

6173h
|yn+2

[l2̅]
−

�̅�n+2
[q̅2]

|  (17) 

|y(xn+3) − �̅�n+3

[l̃3]
| ≈

|𝑧(xn+3)−�̅�n+3
[q̅3]

|

h
≈

4050

5489h
|yn+3

[l3̅]
−

�̅�n+3
[q̅3]

| ,  
where 𝑧 constitute the solution to the first 
derivative equation gratifying the initial condition 
𝑧(𝑥𝑛) = y(xn).  
  Imagine if we immediately reconstruct the 
situation with a new step size 𝑞ℎ producing new 
approximants yn+1

[l1̅]
, �̅�n+1

[q̅1], yn+2

[l2̅]
, �̅�n+2

[q̅2]  and 

yn+3

[l3̅]
 and �̅�n+3

[q̅3]. To check and control the global 
error to inside ε1, we select q such that  
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+1

[q̅1]
(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε1  

|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+2
[q̅2]

(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε1  

                                                          (18) 
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+3

[q̅3]
(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑞ℎ)|

𝑞ℎ
< ε1  
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Employing (14), we get  
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+1

[q̅1]
(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

215

24
=

|𝑧(4)(�̅�𝑛)|𝑞4ℎ4 ≈
215

24
[

720

6437
|yn+1

[l1̅]
− �̅�n+1

[q̅1]
|] 𝑞4ℎ4,  

|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+2
[q̅2]

(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

215

24
=

|𝑧(4)(�̅�𝑛)|𝑞4ℎ4 ≈
25

3
[

720

6173
|yn+2

[l2̅]
− �̅�n+2

[q̅2]
|] 𝑞4ℎ4,  

 (19) 
|𝑧(𝑥𝑛+𝑞ℎ)−�̅�n+3

[q̅3]
(𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝑞ℎ)|

𝑞ℎ
=

215

24
=

|𝑧(4)(�̅�𝑛)|𝑞4ℎ4 ≈
45

8
[

720

5489
|yn+3

[l3̅]
− �̅�n+3

[q̅3]
|] 𝑞4ℎ4,  

Therefore, we require to select 𝑞 with  

215

24
[

720

6437
|yn+1

[l1̅]
− �̅�n+1

[q̅1]
|] 𝑞4ℎ4 =

6450

6437

|yn+1
[l̅1]

−�̅�n+1
[q̅1]

|

ℎ
/

ℎ < 𝜀1,  

25

3
[

720

6173
|yn+2

[l2̅]
− �̅�n+2

[q̅2]
|] 𝑞4ℎ4 =

6000

6173

|yn+2
[l̅2]

−�̅�n+2
[q̅2]

|

ℎ
<

𝜀1,   (20) 

45

8
[

720

5489
|yn+3

[l3̅]
− �̅�n+3

[q̅3]
|] 𝑞4ℎ4 =

4050

5489

|yn+3
[l̅3]

−�̅�n+3
[q̅3]

|

ℎ
<

𝜀1. 
Accordingly, this will require the change in step 
size from ℎ 𝑡𝑜 𝑞ℎ, where q gratifies 

𝑞 < ((
6437

6450
)

ℎ𝜀1

|yn+1
[l̅1]

−�̅�n+1
[q̅1]

|
)

1

4

≈

0.999496(
ℎ𝜀1

|yn+1
[l̅1]

−�̅�n+1
[q̅1]

|
) , 

𝑞 < ((
6173

6000
)

ℎ𝜀1

|yn+1
[l̅1]

−�̅�n+1
[q̅1]

|
)

1

4

≈

1.00713(
ℎ𝜀1

|yn+2
[l̅2]

−�̅�n+2
[q̅2]

|
) ,    

 (21) 

𝑞 < ((
5489

4050
)

ℎ𝜀1

|yn+1
[l̅1]

−�̅�n+1
[q̅1]

|
)

1

4

≈

1.07897(
ℎ𝜀1

|yn+3
[l̅3]

−�̅�n+3
[q̅3]

|
) . 

Thus, a number of estimate suppositions 
have been established in this development, hence in 
practical applications the new step size 𝑞 is selected 
in a conservative manner. A step size change for 
parallel algorithm is more pricey and tedious in 
terms of functional valuations than for a multi-step 
method [9]. 

According to [15-16], the broad computing 
experience that has been compiled throughout the 
years suggest that the primal to greater efficiency 
and error control in explicit block and implicit 
block methods is the capability to change 
automatically not just the step size, simply also the 
order (and step number of the methods utilized). 
 
 
3 Numerical Examples of Stiff ODEs 
The numerical examples of stiff ODEs consider for 
this research study are those with stiff oscillatory 
and vibrating solutions.  
 
System Problem 1 

The first example is a virtually sinusoidal 
problem defined in the interval 0 ≤ 𝑡 ≤ 10. 
𝑦1

′(𝑥) = −2𝑦1 + 𝑦2 + 2𝑆𝑖𝑛𝑥,     𝑦1(0) = 2  
𝑦2

′(𝑥) = 998𝑦1 − 999𝑦2 + 999𝑆𝑖𝑛𝑥,     𝑦2(0) = 3  
with analytical solution  
𝑦1 = 2𝑒−𝑥 + 𝑆𝑖𝑛𝑥  
𝑦2 = 2𝑒−𝑥 + 𝐶𝑜𝑠𝑥  
Author: [4, 20]. 
 
System Problem 2 
𝑦1

′ = 198𝑦1 + 199𝑦2,   
 𝑦1(0) = 1, 0 ≤ 𝑥 ≤ 10 
𝑦2

′ = −398𝑦1 − 399𝑦2,  𝑦2(0) = −1 
with analytical solution: 𝑦1(𝑥) = 𝑒−𝑥,  𝑦2(𝑥) =
−𝑒−𝑥 
For System 2,  �̅� = −1 𝑎𝑛𝑑 𝜆 = −200. 
Author:  [12, 19]. 
 

System Problem 3 
𝑦1

′ = −20𝑦1 − 19𝑦2,   𝑦1(0) =
2, 0 ≤ 𝑥 ≤ 20 
𝑦2

′ = −19𝑦1 − 20𝑦2 ,   
 𝑦2(0) = 0 
with analytical solution: 𝑦1(𝑥) = 𝑒−39𝑥 + 𝑒−𝑥,  
𝑦2(𝑥) = 𝑒−39𝑥 − 𝑒−𝑥. 
Author: [19]  
 
 
4 Results and Discussion 
The numerical examples of system1, system 2 and 
system 3 are all oscillatory stiff systems of ordinary 
differential equations which must gratifies the 
condition of definition 1 and 2 with respect to the 
oscillating behaviour or periodic vibrations. Most 
block backward differentiation formula derivations 
are carried out employing the multinomial 
approximant, Lagrange multinomial, backward 
difference multinomial and Taylor series expansion 
of the linear operator. The PS in accordance with 
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definition 1 and 2 is formulated using exponentially 
fitted which is one of the principal justification to 
outwit the Dahlquist theorem and backward 
differentiation formula. These aspects yield a very 
good precision and efficiency with the introduction 
of the suitable variable step size and error tolerance 
criteria. The strength of the parallel solver lies in 
the ability to find a suitable step size and generate 
the error tolerance criteria to foster the convergence 
of the loop. The PS performs better compare to 
1𝐵𝐷𝐹, 2𝐵𝐷𝐹, 3𝐵𝐷𝐹, 𝐵𝐷𝐹(5),
𝐻𝐵𝑆𝐷𝐵𝐷𝐹 𝑎𝑛𝑑 3𝑁𝐵𝐵𝐷𝐹 due to the task involved 
in designing a suitable variable step size for each 
loop to ensure the convergence at every error 
tolerance criteria. Again, PS implements an 
expanded exponentially fitted multinomial 
approximant based on the oscillatory behaviour of 
the solution as seen in the numerical examples. 
This strategy will ensure faster convergence of the 
loop with very good precision and efficiency. On 
the other hand,  𝐻𝐵𝑆𝐷𝐵𝐷𝐹 is auto-initiating with 
good region of absolute stability and fixed large 
step length ℎ to ensure the implementation. 
Therefore, 𝐻𝐵𝑆𝐷𝐵𝐷𝐹 shows well stable properties 
with precision and efficiency while the 
1𝐵𝐷𝐹, 2𝐵𝐷𝐹, 3𝐵𝐷𝐹, 𝐵𝐷𝐹(5) 𝑎𝑛𝑑 3𝑁𝐵𝐵𝐷𝐹  are 
all centred on trimming the entire number of paces, 
computing time utilized and possessing good 
stability region [4, 12, 19-20]. 
 

 
Table 1. Numerical Results for  System Problem 1 

MU MAXE ETC 

𝐵𝐵𝐷𝐹(5) 1.02772 × 10−4 10−4 
𝑃𝑆(𝑦1) 3.83169 × 10−5 10−4 
𝑃𝑆(𝑦2) 3.8188 × 10−5 10−4 

𝐵𝐵𝐷𝐹(5) 1.02861 × 10−6 10−6 
𝑃𝑆(𝑦1) 3.98 × 10−7 10−6 
𝑃𝑆(𝑦2) 4.10127 × 10−7 10−6 

𝐻𝐵𝑆𝐷𝐵𝐷𝐹 8.9924 × 10−7 10−7 
𝑃𝑆(𝑦1) 6.29699 × 10−8 10−7 
𝑃𝑆(𝑦2) 3.71197 × 10−8 10−7 
𝑃𝑆(𝑦1) 3.99507 × 10−9 10−8 
𝑃𝑆(𝑦2) 4.13105 × 10−9 10−8 

𝐵𝐵𝐷𝐹(5) 6.77840 × 10−9 10−9 
𝐻𝐵𝑆𝐷𝐵𝐷𝐹 5.9042 × 10−9 10−9 

𝑃𝑆(𝑦1) 6.30645 × 10−10 10−9 
𝑃𝑆(𝑦2) 3.72004 × 10−10 10−9 
𝑃𝑆(𝑦1) 6.29699 × 10−11 10−10 
𝑃𝑆(𝑦2) 3.83059 × 10−11 10−10 

𝐻𝐵𝑆𝐷𝐵𝐷𝐹 4.5695 × 10−11 10−11 
𝑃𝑆(𝑦1) 6.3074 × 10−12 10−11 
𝑃𝑆(𝑦2) 3.72058 × 10−12 10−11 

𝐻𝐵𝑆𝐷𝐵𝐷𝐹 2.9376 × 10−13 10−13 
𝑃𝑆(𝑦1) 6.30607 × 10−14 10−13 
𝑃𝑆(𝑦2) 3.73035 × 10−14 10−13 

 
Table 2.  Numerical Results for  System Problem 2 

MU MAXE ETC 

3𝐵𝐷𝐹 1.07308 × 10−2 10−2 
𝑃𝑆(𝑦1) 3.95037 × 10−3 10−2 
1𝐵𝐷𝐹 3.61405 × 10−3 10−3 
2𝐵𝐷𝐹 7.18323 × 10−3 10−3 
3𝐵𝐷𝐹 1.10060 × 10−3 10−3 
𝑃𝑆(𝑦1) 3.76613 × 10−4 10−3 
1𝐵𝐷𝐹 3.67235 × 10−4 10−4 
2𝐵𝐷𝐹 7.34012 × 10−4 10−4 
3𝐵𝐷𝐹 1.10333 × 10−4 10−4 

3NBBDF 1.94447 × 10−4 10−4 
𝑃𝑆(𝑦1) 3.97367 × 10−5 10−4 
1𝐵𝐷𝐹 3.67815 × 10−5 10−5 
2𝐵𝐷𝐹 7.35584 × 10−5 10−5 
3𝐵𝐷𝐹 1.10361 × 10−5 10−5 
𝑃𝑆(𝑦1) 4.20444 × 10−6 10−5 
1𝐵𝐷𝐹 3.67873 × 10−6 10−6 
2𝐵𝐷𝐹 7.35741 × 10−6 10−6 
3𝐵𝐷𝐹 1.10363 × 10−6 10−6 

3NBBDF 2.07993 × 10−6 10−6 
𝑃𝑆(𝑦1) 4.51844 × 10−7 10−6 
1𝐵𝐷𝐹 3.67839 × 10−7 10−7 
2𝐵𝐷𝐹 7.35747 × 10−7 10−7 
𝑃𝑆(𝑦1) 4.25334 × 10−8 10−7 

3𝑁𝐵𝐵𝐷𝐹 2.09995 × 10−8 10−8 
𝑃𝑆(𝑦1) 4.53559 × 10−9 10−8 

3𝑁𝐵𝐵𝐷𝐹 2.10257 
× 10−10 

10−10 

𝑃𝑆(𝑦1) 4.53733 
× 10−11 

10−10 

3𝑁𝐵𝐵𝐷𝐹 1.41029 
× 10−11 

10−11 

𝑃𝑆(𝑦1) 4.2587 × 10−12 10−11 
 
Table 3. Numerical Results for  System Problem3 

MU MAXE ETC 

3𝑁𝐵𝐵𝐷𝐹 6.98707 × 10−2 10−2 
𝑃𝑆(𝑦1)  4.048 × 10−3 10−2 
𝑃𝑆(𝑦2)  4.04018 

× 10−3 
10−2 

3𝑁𝐵𝐵𝐷𝐹 5.40956 × 10−3 10−3 
𝑃𝑆(𝑦1)  4.06886 ×

 10−4 
10−3 

𝑃𝑆(𝑦2)  4.0628 × 10−4 10−3 
3𝑁𝐵𝐵𝐷𝐹 3.08942 × 10−5 10−5 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.70

Olasunmbo Olaoluwa Agboola, 
Jimevwo Godwin Oghonyon, Temitope Abodunrin

E-ISSN: 2224-2880 614 Volume 21, 2022



𝑃𝑆(𝑦1) 4.56163  
×  10−6 

10−5 

𝑃𝑆(𝑦2)  4.55556 ×
 10−6 

10−5 

3𝑁𝐵𝐵𝐷𝐹 3.18534 × 10−7 10−7 
𝑃𝑆(𝑦1) 4.61687 × 10−8 10−7 
𝑃𝑆(𝑦2)  4.61079 ×

 10−8 
10−7 

3𝑁𝐵𝐵𝐷𝐹 3.19872 × 10−9 10−9 
𝑃𝑆(𝑦1) 4.62245 

× 10−10 
10−9 

𝑃𝑆(𝑦2) 4.61638 
× 10−10 

10−9 

 
4.1 Nomenclature 
The nomenclatures utilized in the tables represent 
the following meaning. 
𝑃𝑆(𝑦1) : parallel solver of solution  𝑦1 
𝑃𝑆(𝑦2) : parallel solver of solution  𝑦2 
𝑀𝑈 : method used 
𝑀𝐴𝑋𝐸 : maximum errors 
𝐸𝑇𝐶 : error tolerance criteria 
𝐻𝐵𝑆𝐷𝐵𝐷𝐹: hybrid block second derivative 
backward differentiation formula [4]. 
1𝐵𝐷𝐹 : 𝑟 =  1 − 𝑝𝑜𝑖𝑛𝑡 BDF method [12]. 
2𝐵𝐷𝐹 : 𝑟 =  2 − 𝑝𝑜𝑖𝑛𝑡 BBDF method [12]. 
3𝐵𝐷𝐹 : 𝑟 =  3 − 𝑝𝑜𝑖𝑛𝑡 BBDF method [12]. 
3𝑁𝐵𝐵𝐷𝐹: 3 − 𝑝𝑜𝑖𝑛𝑡 fifth order new BBDF 
method [19]. 
𝐵𝐵𝐷𝐹(5): fifth order Block Backward 
Differentiation Formulas [20]. 
 
 
5 Conclusion 
Parallel solver for oscillatory stiff systems of ODEs 
has been suggested. Parallel solver is a fusion of 
the explicit and implicit blocks method developed 
via interpolation and collocation methods with the 
help of the exponentially fitted method as the 
polynomial. The exponentially fitted method and 
the components of the extrapolation processes such 
as variable step, variable order and suitable variable 
step size were used to outwit the Dahlquist obstacle 
and backward differentiation formulas. This 
combination is geared to foster error control with 
an improve accuracy, greater efficiency and 
maximize errors. Three problems were examined 
under the following error tolerance criteria; 
10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 
10−10, 10−11, 10−13and compared with PS. The 
convergence of PS is made possible with the help 
of deciding a suitable step size to meet the error 
tolerance criteria which in turn lead to achieving 

lesser maximum error. The following methods of 
1𝐵𝐵𝐷𝐹, 2𝐵𝐵𝐷𝐹, 3𝐵𝐵𝐷𝐹, 𝐵𝐵𝐷𝐹(5), 3𝑁𝐵𝐵𝐷𝐹,  
𝐻𝐵𝑆𝐷𝐵𝐷𝐹 has good stability properties which is 
implemented using large step size compare to 
𝑃𝑆(𝑦1), 𝑃𝑆(𝑦2) that requires the determination of a 
suitable variable step size and error tolerance 
criteria during implementation.  Table 1, Table 2 
and Table 3 presents the end result of the PS 
compare with other subsisting methods of 
1𝐵𝐵𝐷𝐹, 2𝐵𝐵𝐷𝐹, 3𝐵𝐵𝐷𝐹, 𝐵𝐵𝐷𝐹(5), 3𝑁𝐵𝐵𝐷𝐹,  
𝐻𝐵𝑆𝐷𝐵𝐷𝐹 .Thus, PS which involves tedious 
computing strategies of implementing variable step, 
variable order and finding suitable variable step 
size has the advantage of high precision, high 
efficiency with more preferred maximum errors 
compare to subsisting methods of 
1𝐵𝐵𝐷𝐹, 2𝐵𝐵𝐷𝐹, 3𝐵𝐵𝐷𝐹, 𝐵𝐵𝐷𝐹(5), 3𝑁𝐵𝐵𝐷𝐹, 
 𝐻𝐵𝑆𝐷𝐵𝐷𝐹.  
 

 

Further Study: 

The further study will be to implement parallel 
solver in higher order of ODEs.  
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